
spead2
Release 4.3.1

National Research Foundation (SARAO)

Feb 13, 2024

CONTENTS

1 Introduction to spead2 3
1.1 Preparation . 3
1.2 Installing spead2 for Python . 4
1.3 Installing spead2 for C++ . 4

2 Python API for spead2 7
2.1 SPEAD flavours . 7
2.2 Mapping of SPEAD protocol to Python . 8
2.3 Stream control items . 8
2.4 Items and item groups . 9
2.5 Thread pools . 11
2.6 Receiving . 11
2.7 Sending . 19
2.8 In-process transport . 27
2.9 Logging . 28
2.10 Support for ibverbs . 28
2.11 Chunking receiver . 31
2.12 Chunking stream groups . 35

3 C++ API for spead2 37
3.1 C++ API stability . 37
3.2 Asynchronous I/O . 37
3.3 Receiving . 39
3.4 Sending . 57
3.5 In-process transport . 67
3.6 Logging . 68
3.7 Support for ibverbs . 68
3.8 Chunking receiver . 73
3.9 Chunking stream groups . 80

4 Advanced features 87
4.1 Chunking receiver . 87
4.2 Chunking stream groups . 89
4.3 Receiver stream statistics . 90

5 Performance tuning 93
5.1 System tuning . 93
5.2 Protocol design . 95
5.3 Application tuning . 96

6 Command-line tools 99

i

6.1 spead2_bench . 99
6.2 spead2_send/spead2_recv . 99
6.3 mcdump . 99
6.4 spead2_net_raw . 101

7 Migrating to version 3 103
7.1 Receive stream configuration . 103
7.2 Send stream configuration . 104
7.3 Substreams . 104
7.4 Out-of-order packets . 104
7.5 Loop argument to asyncio functions . 104
7.6 Command-line arguments in tools . 105
7.7 Removal of deprecated functionality . 105
7.8 Queue depth for sending with ibverbs . 105

8 Migrating to version 4 107
8.1 Removed functionality . 107
8.2 Meson . 108
8.3 C++17 . 109
8.4 Boost . 110
8.5 pcap . 110
8.6 Code generation . 110
8.7 Python configuration . 110
8.8 Python editable installs . 110

9 Developer documentation 111
9.1 Development processes . 111
9.2 Design . 116

10 Changelog 125

11 License 149

12 Indices and tables 151

Python Module Index 153

Index 155

ii

spead2, Release 4.3.1

Contents:

CONTENTS 1

spead2, Release 4.3.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO SPEAD2

spead2 is an implementation of the SPEAD protocol, with both Python and C++ bindings. The 2 in the name indicates
that this is a new implementation of the protocol; the protocol remains essentially the same. Compared to the PySPEAD
implementation, spead2:

• is at least an order of magnitude faster when dealing with large heaps;
• correctly implements several aspects of the protocol that were implemented incorrectly in PySPEAD (bug-
compatibility is also available);

• correctly implements many corner cases on which PySPEAD would simply fail;
• cleanly supports several SPEAD flavours (e.g. 64-40 and 64-48) in one module, with the receiver adapting to the
flavour used by the sender;

• supports Python 3;
• supports asynchronous operation, using asyncio.

1.1 Preparation

There is optional support for ibverbs for higher performance, and pcap for reading from previously captured packet dumps.
If the libraries (including development headers) are installed, they will be detected automatically and support for them
will be included.
High-performance usage requires larger buffer sizes than Linux allows by default. The following commands will increase
the permitted buffer sizes on Linux:

sysctl net.core.wmem_max=16777216
sysctl net.core.rmem_max=16777216

Note that these commands are not persistent across reboots, and the settings need to be stored in /etc/sysctl.conf
or /etc/sysctl.d.

3

https://github.com/ska-sa/PySPEAD/
https://docs.python.org/3/library/asyncio.html
https://www.openfabrics.org/downloads/libibverbs/README.html
http://www.tcpdump.org/

spead2, Release 4.3.1

1.2 Installing spead2 for Python

The only Python dependency is numpy.
The test suite has additional dependencies; refer to Getting started with development if you are developing spead2.
There are two ways to install spead2 for Python: compiling from source and installing a binary wheel.

1.2.1 Installing a binary wheel

As from version 1.12, binary wheels are provided on PyPI for x86-64 Linux systems. These support all the optional
features, and it is the recommended installation method as it does not depend on a compiler, development libraries etc.
The wheels use the “manylinux2014” tag, which requires at least pip 19.3 to install.
Since version 4.0 there are also aarch64 Linux wheels, which use the “manylinux_2_28” tag and require at least pip
20.3; and wheels for MacOS (both Intel and Apple Silicon).
Provided your system meets these requirements, just run:

pip install spead2

1.2.2 Python install from source

Installing from source requires a modern C++ compiler supporting C++17 (GCC 7+ or Clang 4+, although GCC 9.4 and
Clang 10 are the oldest tested versions and support for older compilers may be dropped) as well as Boost 1.69+ (only
headers are required), libdivide, and the Python development headers. At the moment only GNU/Linux and OS X get
tested but other POSIX-like systems should work too. There are no plans to support Windows.
Installation works with standard Python installation methods.

1.3 Installing spead2 for C++

Installing spead2 requires
• a modern C++ compiler supporting C++17 (see above for supported compilers)
• Boost 1.69+, including the compiled boost_program_options library
• libdivide
• Python 3.x, with the packaging, jinja2, and pycparser packages
• Meson 1.2 or later (note that this might be newer than the Meson package in your operating system’s package
manager).

At the moment only GNU/Linux and OS X get tested but other POSIX-like systems should work too. There are no plans
to support Windows.
Compilation uses the standard Meson flow (refer to the Meson manual for further help):

meson setup [options] build
cd build
meson compile
meson install

4 Chapter 1. Introduction to spead2

http://www.numpy.org
https://mesonbuild.com/

spead2, Release 4.3.1

Optional features are autodetected by default, but can be disabled using Meson options. To see the available options, run
meson configure in the build directory. One option that may squeeze out a very small amount of extra performance
is link-time optimization, enabled with -Db_lto=true.
The installation will install some benchmark tools, a static library, and the header files.

1.3.1 Shared library

There is experimental support for building a shared library. Pass --default_library=both to meson setup.
It’s also possible to pass --default_library=shared, in which case the static library will not be built, and the
command-line tools will be linked against the shared library.
It’s not recommended for general use because the binary interface is likely to be incompatible between spead2 versions,
requiring software linked against the shared library to be recompiled after upgrading spead2 (which defeats one of the
points of a shared library). It also exports a lot of symbols (e.g., from Boost) that may clash with other libraries. Perfor-
mance may be lower than using the static library. It is made available for users who need to load the library dynamically
as part of a plugin system.

1.3. Installing spead2 for C++ 5

spead2, Release 4.3.1

6 Chapter 1. Introduction to spead2

CHAPTER

TWO

PYTHON API FOR SPEAD2

This documentation does not cover all the classes andmethods in themodule. Instead, it documents those that are expected
to be commonly used by the user, and omits those designed for the classes to communicate with each other or with the
C++ backend.

2.1 SPEAD flavours

The SPEAD protocol is versioned and within a version allows for multiple flavours, with different numbers of bits for
item pointer fields. The spead2 library supports all SPEAD-64-XX flavours of version 4, where XX is a multiple of 8.
Furthermore, PySPEAD 0.5.2 has a number of bugs in its implementation of the protocol, which effectively defines a new
protocol. This is treated as part of the flavour in spead2. Some receive functions have a bug_compat parameter which
specifies which of these bugs to maintain compatibility with:

• spead2.BUG_COMPAT_DESCRIPTOR_WIDTHS: the descriptors are encoded with shape and format fields
sized as for SPEAD-64-40, regardless of the actual flavour.

• spead2.BUG_COMPAT_SHAPE_BIT_1: the first byte of a shape is set to 2 to indicate a variably-sized dimen-
sion, instead of 1.

• spead2.BUG_COMPAT_SWAP_ENDIAN: numpy arrays are encoded/decoded in the opposite endianness to that
specified in the descriptor.

• spead2.BUG_COMPAT_NO_SCALAR_NUMPY: scalar items specified with a descriptor are transmitted with a
descriptor, even if it is possible to convert it to a dtype.

• spead2.BUG_COMPAT_PYSPEAD_0_5_2: all of the above (and any other bugs later found in this version of
PySPEAD).

For sending, the full flavour is specified by a spead2.Flavour object. It allows all the fields to be specified to allow for
future expansion, but ValueError is raised unless version is 4 and item_pointer_bits is 64. There is a default constructor
that returns SPEAD-64-40 with bug compatibility disabled.
class Flavour(version, item_pointer_bits, heap_address_bits, bug_compat=0)

The constructor arguments are available as read-only attributes.

7

https://docs.python.org/3/library/exceptions.html#ValueError

spead2, Release 4.3.1

2.2 Mapping of SPEAD protocol to Python

• Any descriptor with a numpy header is handled by numpy. The value is converted to native endian, but is otherwise
left untouched.

• Strings are expected to use ASCII encoding only. At present this is variably enforced. Future versions may apply
stricter enforcement. This applies to names, descriptions, and to values passed with the c format code.

• The c format code may only be used with length 8, and f may only be used with lengths 32 or 64.
• The 0 format code is not supported.
• All values sent or received are converted to numpy arrays. If the descriptor uses a numpy header, this is the type of
the array. Otherwise, a dtype is constructed by converting the format code. The following are converted to numpy
primitive types:

– u8, u16, u32, u64
– i8, i16, i32, i64
– f32, f64
– b8 (converted to dtype bool)
– c8 (converted to dtype S1)

Other fields will be kept as Python objects. If there are multiple fields, their names will be generated by numpy (f0,
f1, etc). If all the fields convert to native types, a fast path will be used for sending and receiving (as fast as using
an explicit numpy header).

• At most one element of the shape may indicate a variable-length field, whose length will be computed from the size
of the item, or zero if any other element of the shape is zero.

When transmitting data, a few cases are handled specially:
• If the expected shape is one-dimensional, but the provided value is an instance of bytes, str or unicode, it
will be broken up into its individual characters. This is a convenience for sending variable-length strings.

• If the format is a single signed or unsigned integer whose number of bits is less than 64 but a multiple of 8, and the
value is a zero-dimensional numpy array with dtype >u8, the relevant bytes are referenced by the heap. The value
can later be updated and the same heap sent again without creating a new Heap object.

When receiving data, some transformations are made:
• A zero-dimensional array is returned as a scalar, rather than a zero-dimensional array object.
• If the format is given and is c8 and the array is one-dimensional, it is joined together into a Python str.

2.3 Stream control items

A heap with the CTRL_STREAM_STOP flag will shut down the stream, but the heap is not passed on to the application.
Senders should thus avoid putting any other data in such heaps. These heaps are not automatically sent; use spead2.
send.HeapGenerator.get_end() to produce such a heap.
In contrast, stream start flags (CTRL_STREAM_START) have no effect on internal processing. Senders can generate them
using spead2.send.HeapGenerator.get_start() and receivers can detect them using spead2.recv.
Heap.is_start_of_stream().

8 Chapter 2. Python API for spead2

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spead2, Release 4.3.1

2.4 Items and item groups

Each data item that can be communicated over SPEAD is described by a spead2.Descriptor. Items combine a
descriptor with a current value, and a version number that is used to detect which items have been changed (either in the
library when transmitting, or by the user when receiving).
class spead2.Descriptor(id, name, description, shape, dtype=None, order='C', format=None)

Metadata for a SPEAD item.
There are a number of restrictions on the parameters, which will cause ValueError to be raised if violated:

• At most one element of shape can be None.
• Exactly one of dtype and format must be non-None.
• If dtype is specified, shape cannot have any unknown dimensions.
• If format is specified, order must be ‘C’
• If dtype is specified, it cannot contain objects, and must have positive size.

Parameters
• id (int) – SPEAD item ID
• name (str) – Short item name, suitable for use as a key
• description (str) – Long item description
• shape (sequence) – Dimensions, with None indicating a variable-size dimension
• dtype (numpy data type, optional) – Data type, or None if format will be used
instead

• order ({'C', 'F'}) – Indicates C-order or Fortran-order storage
• format (list of pairs, optional) – Structure fields for generic (non-numpy) type.
Each element of the list is a tuple of field code and bit length.

itemsize_bits

Number of bits per element
is_variable_size()

Determine whether any element of the size is dynamic
dynamic_shape(max_elements)

Determine the dynamic shape, given incoming data that is big enough to hold max_elements elements.
compatible_shape(shape)

Determine whether shape is compatible with the (possibly variable-sized) shape for this descriptor
class spead2.Item(*args, **kwargs, value=None)

A SPEAD item with a value and a version number.
Parameters

value (object, optional) – Initial value
value

Current value. Assigning to this will increment the version number. AssigningNonewill raiseValueError
because there is no way to encode this using SPEAD.

2.4. Items and item groups 9

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#ValueError

spead2, Release 4.3.1

Warning: If you modify a mutable value in-place, the change will not be detected, and by default
HeapGenerator.get_heap() will not add the item to the heap it returns. In this case, either
manually increment the version number, reassign the value, or pass data="all" to get_heap().

version

Version number
class spead2.ItemGroup

Items are collected into sets called item groups, which can be indexed by either item ID or item name.
There are some subtleties with respect to re-issued item descriptors. There are two cases:
1. The item descriptor is identical to a previous seen one. In this case, no action is taken.
2. Otherwise, any existing items with the same name or ID (which could be two different items) are dropped,

the new item is added, and its value becomes None. The version is set to be higher than version on an item
that was removed, so that consumers who only check the version will detect the change.

add_item(*args, **kwargs)
Add a new item to the group. The parameters are used to construct an Item. If id is None, it will be
automatically populated with an ID that is not already in use.
See the class documentation for the behaviour when the name or ID collides with an existing one. In addition,
if the item descriptor is identical to an existing one and a value, this value is assigned to the existing item.

keys()

Item names
values()

Item values
items()

Dictionary style (name, value) pairs
ids()

Item IDs
update(heap, new_order='=')

Update the item descriptors and items from an incoming heap.
Parameters

• heap (spead2.recv.Heap) – Incoming heap
• new_order (str) – Byte ordering to coerce new byte arrays into. The default is to force
arrays to native byte order. Use '|' to keep whatever byte order was in the heap. See
np.dtype.newbyteorder() for the full list of options.

Returns
Items that have been updated from this heap, indexed by name

Return type
dict

10 Chapter 2. Python API for spead2

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

spead2, Release 4.3.1

2.5 Thread pools

The actual sending and receiving of packets is done by separate C threads. Each stream is associated with a thread pool,
which is a pool of threads able to process its packets. See the performance guidelines for advice on how many threads to
use.
There is one important consideration for deciding whether streams share a thread pool: if a received stream is not being
consumed, it may block one of the threads from the thread pool1. Thus, if several streams share a thread pool, it is
important to be responsive to all of them. Deciding that one stream is temporarily uninteresting and can be discarded
while listening only to another one can thus lead to a deadlock if the two streams share a thread pool with only one thread.

class spead2.ThreadPool(threads=1, affinity=[])
Construct a thread pool and start the threads. A list of integers can be provided for affinity to have the threads
bound to specific CPU cores (this is only implemented for glibc). If there are fewer values than threads, the list is
reused cyclically (although in this case you’re probably better off having fewer threads in this case).
stop()

Shut down the worker threads. Calling this while there are still open streams is not advised. In most cases,
garbage collection is sufficient.

static set_affinity(core)
Binds the caller to CPU core core.

2.6 Receiving

The classes associated with receiving are in the spead2.recv package. A stream represents a logical stream, in that
packets with the same heap ID are assumed to belong to the same heap. A stream can have multiple physical transports.
Streams yield heaps, which are the basic units of data transfer and contain both item descriptors and item values. While
it is possible to directly inspect heaps, this is not recommended or supported. Instead, heaps are normally passed to
spead2.ItemGroup.update().
class spead2.recv.Heap

cnt

Heap identifier (read-only)
flavour

SPEAD flavour used to encode the heap (see SPEAD flavours)
is_start_of_stream()

Returns true if the packet contains a stream start control item.
is_end_of_stream()

Returns true if the packet contains a stream stop control item.

Note: Malformed packets (such as an unsupported SPEAD version, or inconsistent heap lengths) are dropped, with a log
message. However, errors in interpreting a fully assembled heap (such as invalid/unsupported formats, data of the wrong
size and so on) are reported as ValueError exceptions. Robust code should thus be prepared to catch exceptions from
heap processing.

1 This is a limitation of the current design that will hopefully be overcome in future versions.

2.5. Thread pools 11

https://docs.python.org/3/library/exceptions.html#ValueError

spead2, Release 4.3.1

2.6.1 Configuration

Once a stream is constructed, the configuration cannot be changed. The configuration is captured in two classes,
StreamConfig and RingStreamConfig. The split is a reflection of the C++ API and not particularly relevant in
Python. The configuration options can either be passed to the constructors (as keyword arguments) or set as properties
after construction.
class spead2.recv.StreamConfig(**kwargs)

Parameters
• max_heaps (int) – The number of partial heaps that can be live at one time, per substream.
This affects how intermingled heaps can be (due to out-of-order packet delivery) before heaps
get dropped. See Packet ordering for details.

• substreams (int) – Set the number of parallel streams. The remainder when the heap cnt
is divided by this value is used to identify the substream. See Packet ordering for details.

• bug_compat (int) – Bug compatibility flags (see SPEAD flavours)
• memcpy (int) – Set the method used to copy data from the network to the heap. The de-
fault is MEMCPY_STD. This can be changed to MEMCPY_NONTEMPORAL, which writes to
the destination with a non-temporal cache hint (if SSE2 is enabled at compile time). This can
improve performance with large heaps if the data is not going to be used immediately, by re-
ducing cache pollution. Be careful when benchmarking: receiving heaps will generally appear
faster, but it can slow down subsequent processing of the heap because it will not be cached.

• memory_allocator (spead2.MemoryAllocator) – Set the memory allocator for a
stream. See Memory allocators for details.

• stop_on_stop_item (bool) – By default, a heap containing a stream control stop
item will terminate the stream (and that heap is discarded). In some cases it is useful
to keep the stream object alive and ready to receive a following stream. Setting this at-
tribute to False will disable this special treatment. Such heaps can then be detected with
is_end_of_stream().

• allow_unsized_heaps (bool) – By default, spead2 caters for heaps without a
HEAP_LEN item, and will dynamically extend the memory allocation as data arrives. How-
ever, this can be expensive, and ideally senders should include this item. Setting this attribute
to False will cause packets without this item to be rejected.

• allow_out_of_order (bool) – Whether to allow packets within a heap to be received
out-of-order. See Packet ordering for details.

• stream_id (int) – An arbitrary integer to associate with the stream. This is used to identify
chunks generated by spead2.recv.ChunkRingStream.

• explicit_start (bool) – If set to true, the stream will not receive any data until
spead2.recv.Stream.start() is called. See Explicit start for details.

Raises
ValueError – if max_heaps is zero.

add_stat(name, mode=StreamStatConfig.COUNTER)
Register a custom statistic. The return value is the index for the statistic.

Raises
ValueError – if name already exists

next_stat_index()

The index that will be returned by the next call to add_stat().

12 Chapter 2. Python API for spead2

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

spead2, Release 4.3.1

get_stat_index(name)
Get the index of statistic name.

Raises
IndexError – if name is not a known statistic name

stats

Read-only list of StreamStatConfig describing all the statistics for the stream (including core ones).
Positions in this list correspond to indices returned by get_stat_index().

class spead2.recv.RingStreamConfig(**kwargs)

Parameters
• heaps (int) – The capacity of the ring buffer between the network threads and the consumer.
Increasing this may reduce lock contention at the cost of more memory usage.

• contiguous_only (bool) – If set to False, incomplete heaps will be included in the
stream as instances of IncompleteHeap. By default they are discarded. See Incomplete
Heaps for details.

• incomplete_keep_payload_ranges (bool) – If set to True, it is possible to
retrieve information about which parts of the payload arrived in incomplete heaps, using
IncompleteHeap.payload_ranges().

Raises
ValueError – if ring_heaps is zero.

2.6.2 Blocking receive

To do blocking receive, create a spead2.recv.Stream, and add transports to it with add_buffer_reader(),
add_udp_reader(), add_tcp_reader() or add_udp_pcap_file_reader(). Then either iterate over
it, or repeatedly call get().
class spead2.recv.Stream(thread_pool, stream_config=StreamConfig(), ring_config=RingStreamConfig())

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• config (spead2.recv.StreamConfig) – Stream configuration
• ring_config (spead2.recv.RingStreamConfig) – Ringbuffer configuration

config

Stream configuration passed to the constructor (read-only)
ring_config

Ringbuffer configuration passed to the constructor (read-only)
add_buffer_reader(buffer)

Feed data from an object implementing the buffer protocol.
add_udp_reader(port, max_size=DEFAULT_UDP_MAX_SIZE,

buffer_size=DEFAULT_UDP_BUFFER_SIZE, bind_hostname='', socket=None)
Feed data from a UDP port.

Parameters
• port (int) – UDP port number

2.6. Receiving 13

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

• max_size (int) – Largest packet size that will be accepted.
• buffer_size (int) – Kernel socket buffer size. If this is 0, the OS default is used. If a
buffer this large cannot be allocated, a warning will be logged, but there will not be an error.

• bind_hostname (str) – If specified, the socket will be bound to the first IP address
found by resolving the given hostname. If this is a multicast group, then it will also subscribe
to this multicast group.

add_udp_reader(multicast_group, port, max_size=DEFAULT_UDP_MAX_SIZE,
buffer_size=DEFAULT_UDP_BUFFER_SIZE, interface_address)

Feed data from a UDP port (IPv4 only). This is intended for use with multicast, but it will also accept a
unicast address as long as it is the same as the interface address.

Parameters
• multicast_group (str) – Hostname/IP address of the multicast group to subscribe to
• port (int) – UDP port number
• max_size (int) – Largest packet size that will be accepted.
• buffer_size (int) – Kernel socket buffer size. If this is 0, the OS default is used. If a
buffer this large cannot be allocated, a warning will be logged, but there will not be an error.

• interface_address (str) – Hostname/IP address of the interface which will be sub-
scribed, or the empty string to let the OS decide.

add_udp_reader(multicast_group, port, max_size=DEFAULT_UDP_MAX_SIZE,
buffer_size=DEFAULT_UDP_BUFFER_SIZE, interface_index)

Feed data from a UDP port with multicast (IPv6 only).
Parameters

• multicast_group (str) – Hostname/IP address of the multicast group to subscribe to
• port (int) – UDP port number
• max_size (int) – Largest packet size that will be accepted.
• buffer_size (int) – Kernel socket buffer size. If this is 0, the OS default is used. If a
buffer this large cannot be allocated, a warning will be logged, but there will not be an error.

• interface_index (str) – Index of the interface which will be subscribed, or 0 to let
the OS decide.

add_tcp_reader(port, max_size=DEFAULT_TCP_MAX_SIZE,
buffer_size=DEFAULT_TCP_BUFFER_SIZE, bind_hostname='')

Receive data over TCP/IP. This will listen for a single incoming connection, after which no new connections
will be accepted. When the connection is closed, the stream is stopped.

Parameters
• port (int) – TCP port number
• max_size (int) – Largest packet size that will be accepted.
• buffer_size (int) – Kernel socket buffer size. If this is 0, the OS default is used. If a
buffer this large cannot be allocated, a warning will be logged, but there will not be an error.

• bind_hostname (str) – If specified, the socket will be bound to the first IP address
found by resolving the given hostname.

14 Chapter 2. Python API for spead2

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

spead2, Release 4.3.1

add_tcp_reader(acceptor, max_size=DEFAULT_TCP_MAX_SIZE)
Receive data over TCP/IP. This is similar to the previous overload, but takes a user-provided socket, which
must already be listening for connections. It duplicates the acceptor socket, so the original can be closed
immediately.

Parameters
• acceptor (socket.socket) – Listening socket
• max_size (int) – Largest packet size that will be accepted.

add_udp_pcap_file_reader(filename, filter='')
Feed data from a pcap file (for example, captured with tcpdump or mcdump). An optional filter selects a
subset of the packets from the capture file. This is only available if libpcap development files were found at
compile time.

Parameters
• filename (str) – Filename of the capture file
• filter (str) – Filter to apply to packets from the capture file

add_inproc_reader(queue)
Feed data from an in-process queue. Refer to In-process transport for details.

get()

Returns the next heap, blocking if necessary. If the stream has been stopped, either by calling stop() or
by receiving a stream control packet, it raises spead2.Stopped. However, heap that were already queued
when the stream was stopped are returned first.
A stream can also be iterated over to yield all heaps.

get_nowait()

Like get(), but if there is no heap available it raises spead2.Empty.
start()

Start receiving data. This only needs to be called if the explicit_start parameter to spead2.recv.
StreamConfig is set to True, although it is harmless to call it even if not. If explicit_start is true, then
after calling start(), it is no longer possible to add more readers.

stop()

Shut down the stream and close all associated sockets. It is not possible to restart a stream once it has been
stopped; instead, create a new stream.

fd

The read end of a pipe to which a byte is written when a heap is received. Do not read from this pipe. It is
used for integration with asynchronous I/O frameworks (see below).

stats

Statistics about the stream.
ringbuffer

The internal ringbuffer of the stream (see Statistics).

2.6. Receiving 15

https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spead2, Release 4.3.1

2.6.3 Asynchronous receive

Asynchronous I/O is supported through Python’s asyncio module. It can be combined with other asynchronous I/O
frameworks like twisted and Tornado.
class spead2.recv.asyncio.Stream(*args, **kwargs)

See spead2.recv.Stream (the base class) for other constructor arguments.
get()

Coroutine that yields the next heap, or raises spead2.Stopped once the stream has been stopped and
there is no more data. It is safe to have multiple in-flight calls, which will be satisfied in the order they were
made.

The stream is also asynchronously iterable, i.e., can be used in an async for loop to iterate over the heaps.

2.6.4 Packet ordering

SPEAD is typically carried over UDP, and by its nature, UDP allows packets to be reordered. Packets may also arrive
interleaved if they are produced by multiple senders. We consider two sorts of packet ordering issues:

1. Re-ordering within a heap. By default, spead2 assumes that all the packets that form a heap will arrive in order,
and discards any packet that does not have the expected payload offset. In most networks this is a safe assumption
provided that all the packets originate from the same sender (IP address and port number) and have the same
destination.
If this assumption is not appropriate, it can be changed with the allow_out_of_order attribute of spead2.
recv.StreamConfig. This has minimal impact when packets do in fact arrive in order, but reassembling
arbitrarily ordered packets can be expensive. Allowing for out-of-order arrival also makes handling lost packets
more expensive (because one must cater for them arriving later), which can lead to a feedback loop as this more
expensive processing can lead to further packet loss.

2. Interleaving of packets from different heaps. This is always supported, but to a bounded degree so that lost packets
don’t lead to heaps being kept around indefinitely in the hope that the packet may arrive. The max_heaps attribute
of spead2.recv.StreamConfig determines the amount of overlap allowed: once a packet in heap n is
observed, it is assumed that heap n − max_heaps is complete. When there are many producers it will likely be
necessary to increase this value. Larger values increase the memory usage for partial heaps, and have a small
performance impact.
It’s possible to get more predictable results when the producers interleave their heap cnts (for example, by using
spead2.send.Stream.set_cnt_sequence()) such that the remainder when dividing the heap cnt by
the number of producers identifies the producer. In this case, set the substreams attribute of spead2.recv.
StreamConfig to the number of producers. Note that max_heaps applies separately to each producer, and
can usually be very low (1 or 2) if the producer sends one heap at a time.

2.6.5 Memory allocators

To allow for performance tuning, it is possible to use an alternative memory allocator for heap payloads. A few allo-
cator classes are provided; new classes must currently be written in C++. The default (which is also the base class for
all allocators) is spead2.MemoryAllocator, which has no constructor arguments or methods. An alternative is
spead2.MmapAllocator.
class spead2.MmapAllocator(flags=0, prefer_huge=False)

An allocator using mmap(2). This may be slightly faster for large allocations, and allows setting custom mmap
flags. This is mainly intended for use with the C++ API, but is exposed to Python as well.

Parameters

16 Chapter 2. Python API for spead2

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://twistedmatrix.com/trac/
http://www.tornadoweb.org/en/stable/

spead2, Release 4.3.1

• flags (int) – Extra flags to pass to mmap(2). Finding the numeric values for OS-specific
flags is left as a problem for the user.

• prefer_huge (bool) – If true, allocations will try to use huge pages (if supported by the
OS), and fall back to normal pages if that fails.

The most important custom allocator is spead2.MemoryPool. It allocates from a pool, rather than directly from the
system. This can lead to significant performance improvements when the allocations are large enough that the C library
allocator does not recycle the memory itself, but instead requests memory from the kernel.
A memory pool has a range of sizes that it will handle from its pool, by allocating the upper bound size. Thus, setting too
wide a range will waste memory, while setting too narrow a range will prevent the memory pool from being used at all.
A memory pool is best suited for cases where the heaps are all roughly the same size.
A memory pool can optionally use a background task (scheduled onto a thread pool) to replenish the pool when it gets
low. This is useful when heaps are being captured and stored indefinitely rather than processed and released.
class spead2.MemoryPool(thread_pool, lower, upper, max_free, initial, low_water, allocator=None)

Constructor. One can omit thread_pool and low_water to skip the background refilling.
Parameters

• thread_pool (ThreadPool) – thread pool used for refilling the memory pool
• lower (int) – Minimum allocation size to handle with the pool
• upper (int) – Size of allocations to make
• max_free (int) – Maximum number of allocations held in the pool
• initial (int) – Number of allocations to put in the free pool initially.
• low_water (int) – When fewer than this many buffers remain, the background task will
be started and allocate new memory until initial buffers are available.

• allocator (MemoryAllocator) – Underlying memory allocator
warn_on_empty

Whether to issue a warning if the memory pool becomes empty and needs to allocate newmemory on request.
It defaults to true.

2.6.6 Incomplete Heaps

By default, an incomplete heap (one for which some but not all of the packets were received) is simply dropped and
a warning is printed. Advanced users might need finer control, such as recording metrics about the number of these
heaps. To do so, set contiguous_only to False in the RingStreamConfig. The stream will then yield instances of
IncompleteHeap.
class spead2.recv.IncompleteHeap

cnt

Heap identifier (read-only)
flavour

SPEAD flavour used to encode the heap (see SPEAD flavours)
heap_length

The expected number of bytes of payload (-1 if unknown)

2.6. Receiving 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

received_length

The number of bytes of payload that were actually received
payload_ranges

A list of pairs of heap offsets. Each pair is a range of bytes that was received. This is only non-empty if in-
complete_keep_payload_ranges was set in the RingStreamConfig; otherwise the information is dropped
to save memory.
When using this, you should also set allow_out_of_order to True in the StreamConfig, as otherwise any
data after the first lost packet is discarded.

is_start_of_stream()

Returns true if the packet contains a stream start control item.
is_end_of_stream()

Returns true if the packet contains a stream stop control item.

2.6.7 Statistics

Refer to Receiver stream statistics for general information about statistics.
class spead2.recv.StreamStats

Collection of statistics. It present both dictionary-like and sequence-like interfaces. Iteration is dictionary-like,
iterating over the keys (names of statistics). Indexing with negative indices is not supported.
config

List of spead2.recv.StreamStatConfig describing the available statistics in further detail. This gives
the same list as StreamConfig.stats.

class spead2.recv.StreamStatConfig

class Mode

COUNTER

MAXIMUM

name: str

Name of the statistic
mode: Mode

Mode for updating long-term statistics from per-batch statistics
combine(a, b)

Combine two samples according to the mode.
Additional statistics are available on the ringbuffer underlying the stream (ringbuffer property), with similar caveats
about synchronisation.
class spead2.recv.Stream.Ringbuffer

size()

Number of heaps currently in the ringbuffer.

18 Chapter 2. Python API for spead2

https://docs.python.org/3/library/stdtypes.html#str

spead2, Release 4.3.1

capacity()

Maximum number of heaps that can be held in the ringbuffer (corresponds to the heaps attribute ofRingStream-
Config).

The spead2.recv.stream_stat_indices module contains constants for indices that can be used to retrieve
core statistics by index, without needing to look up the index.
spead2.recv.stream_stat_indices.HEAPS

spead2.recv.stream_stat_indices.INCOMPLETE_HEAPS_EVICTED

spead2.recv.stream_stat_indices.INCOMPLETE_HEAPS_FLUSHED

spead2.recv.stream_stat_indices.PACKETS

spead2.recv.stream_stat_indices.BATCHES

spead2.recv.stream_stat_indices.MAX_BATCH

spead2.recv.stream_stat_indices.SINGLE_PACKET_HEAPS

spead2.recv.stream_stat_indices.SEARCH_DIST

spead2.recv.stream_stat_indices.WORKER_BLOCKED

2.6.8 Explicit start

When using multiple readers with a stream or multiple streams, it is sometimes desirable to have them all begin listening
to the network at the same time, so that their data can be matched up. Adding readers can be slow (mostly due to the cost
of allocating buffers), so when adding multiple readers serially, they will start listening at very different times.
If one sets the explicit_start parameter to spead2.recv.StreamConfig to true, then adding a reader will do the
expensive work of allocating buffers, but will not start it listening to the network. That is done by calling spead2.
recv.Stream.start(). This will still iterate serially over the readers, so they will not start listening at exactly the
same time, but the skew will be much smaller because the operation is much more light-weight.
When this feature is in use, no readers can be added to a stream after calling start() (doing so will raise an exception).
This gives the implementation a hint that adding readers cannot happen concurrently with packets arriving. At present
the implementation does not take advantage of this assumption, but that is subject to change in future versions of spead2.

2.7 Sending

Unlike for receiving, each stream object can only use a single transport. There is currently no support for collective
operations where multiple producers cooperate to construct a heap between them. It is still possible to do multi-producer,
single-consumer operation if the heap IDs are kept separate.
Because each stream has only one transport, there is a separate class for each, rather than a generic Stream class. Be-
cause there is common configuration between the stream classes, configuration is encapsulated in a spead2.send.
StreamConfig.
class spead2.send.StreamConfig(*, max_packet_size=1472, rate=0.0, burst_size=65536, max_heaps=4,

burst_rate_ratio=1.05)

Parameters
• max_packet_size (int) – Heaps will be split into packets of at most this size.

2.7. Sending 19

https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

• rate (double) – Target transmission rate, in bytes per second, or 0 to send as fast as possible.
• burst_size (int) – Bursts of up to this size will be sent as fast as possible. Setting this
too large (larger than available buffer sizes) risks losing packets, while setting it too small may
reduce throughput by causing more sleeps than necessary.

• max_heaps (int) – For asynchronous transmits, the maximum number of heaps that can
be in-flight.

• burst_rate_ratio (float) – If packet sending falls below the target transmission rate,
the rate will be increased until the average rate has caught up. This value specifies the “catch-
up” rate, as a ratio to the target rate.

• rate_method (RateMethod) – Select method for applying the rate limit. If true, then
hardware-based rate limiting may be used if available. In this case it is implementation-defined
whether burst_rate_ratio and burst_size have any effect. This will often produce results that are
at least as good as the software limiter, but in some cases (particularly higher data rates) the
overall rate becomes less accurate and so it is disabled by default.

The constructor arguments are also instance attributes.
class spead2.send.RateMethod

An enumeration to select a method for rate limiting.
SW

Use a generic software rate limiter.
HW

Use a hardware rate limiter, if available. This is currently only supported when using ibverbs, and only if the
hardware supports it. If hardware rate limiting is not available, falls back to software.

AUTO

This is the default, and lets the implementation decide whether to use hardware rate limiting. At present it
will never use the hardware rate limiter (because the available hardware limiters don’t do a good job under
all conditions), but in future it is likely to use the hardware limiter more often in circumstances where it has
been tested to perform well.

Streams send pre-baked heaps, which can be constructed by hand, but are more normally created from an ItemGroup
by a spead2.send.HeapGenerator. To simplify cases where one item group is paired with one heap generator,
a convenience class spead2.send.ItemGroup is provided that inherits from both.
class spead2.send.HeapGenerator(item_group, descriptor_frequency=None,

flavour=<spead2._spead2.Flavour object>)

Tracks which items and item values have previously been sent and generates delta heaps.
Parameters

• item_group (spead2.ItemGroup) – Item group to monitor.
• descriptor_frequency (int, optional) – If specified, descriptors will be re-sent
once every descriptor_frequency heaps generated by this method.

• flavour (spead2.Flavour) – The SPEAD protocol flavour used for heaps generated
by get_heap() and get_end().

add_to_heap(heap, descriptors='stale', data='stale')
Update a heap to contains all the new items and item descriptors since the last call.

Parameters
• heap (Heap) – The heap to update.

20 Chapter 2. Python API for spead2

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

• descriptors ({'stale', 'all', 'none'}) – Which descriptors to send. The
default (‘stale’) sends only descriptors that have not been sent, or have not been sent recently
enough according to the descriptor_frequency passed to the constructor. The other options
are to send all the descriptors or none of them. Sending all descriptors is useful if a new
receiver is added which will be out of date.

• data ({'stale', 'all', 'none'}) – Which data items to send.
• item_group (ItemGroup, optional) – If specified, uses the items from this item group
instead of the one passed to the constructor (which could be None).

Raises
ValueError – if descriptors or data is not one of the legal values

get_heap(*args, **kwargs)
Return a new heap which contains all the new items and item descriptors since the last call. This is a conve-
nience wrapper around add_to_heap().

get_start()

Return a heap that contains only a start-of-stream marker.
get_end()

Return a heap that contains only an end-of-stream marker.
class spead2.send.Heap(flavour=spead2.Flavour())

repeat_pointers

Enable/disable repetition of item pointers in all packets.
Usually this is not needed, but it can enable some specialised use cases where immediates can be recovered
from incomplete heaps or where the receiver examines the item pointers in each packet to decide how to
handle it. The packet size must be large enough to fit all the item pointers for the heap (the implementation
also reserves a little space, so do not rely on a tight fit working).
The default is disabled.

add_item(item)
Add an Item to the heap. This references the memory in the item rather than copying it. It does not cause
a descriptor to be sent; use add_descriptor() for that.

add_descriptor(descriptor)
Add a Descriptor to the heap.

add_start()

Convenience method to add a start-of-stream item.
add_end()

Convenience method to add an end-of-stream item.

2.7. Sending 21

https://docs.python.org/3/library/exceptions.html#ValueError

spead2, Release 4.3.1

2.7.1 Substreams

For some transport types it is possible to create a stream with multiple “substreams”. Each substream typically has a
separate destination address, but all the heaps within the stream are sent in order, and the stream configuration (including
the rate limits) applies to the stream as a whole. Using substreams rather than independent streams gives better control
over the overall transmission rate, and uses fewer system resources.
When sending a heap, an optional parameter called substream_index selects the substream that will be used.

2.7.2 Blocking send

There are multiple stream classes, corresponding to different transports, and some of the classes have several variants of
the constructor. They all implement the following interface (the class exists as a type annotation, but does not currently
exist at runtime).
class spead2.send.SyncStream

send_heap(heap, cnt=-1, substream_index=0, rate=-1.0)
Send a spead2.send.Heap to the peer, and wait for completion. There is currently no indication of
whether it successfully arrived, but IOError is raised if it could not be sent.
If not specified, a heap cnt is chosen automatically (the choice can be modified by calling
set_cnt_sequence()). If a non-negative value is specified for cnt, it is used instead. It is the user’s
responsibility to avoid collisions.
See Substreams for a description of substream_index.
Normally a rate is set for the whole stream, but it can be overridden here by providing a non-negative value.
See spead2.send.StreamConfig for the interpretation.

send_heaps(heaps, mode)
Send a group of heaps. See Batching for more information.
This function will either enqueue all of the heaps, or none of them. In particular, there must be space in the
queue for all of them.
It is an error for heaps to be empty. Currently this raises OSError, but it may be replaced by ValueError
in future.

Parameters
• heaps (List[spead2.send.HeapReference] | spead2.send.
HeapReferenceList) – A list of heaps to send

• mode (spead2.send.GroupMode) – Controls the packet ordering
set_cnt_sequence(next, step)

Modify the linear sequence used to generate heap cnts. The next heap will have cnt next, and each following
cnt will be incremented by step. When using this, it is the user’s responsibility to ensure that the generated
values remain unique. The initial state is next = 1, step = 1.
This is useful when multiple senders will send heaps to the same receiver, and need to keep their heap cnts
separate.
If the computed cnt overflows the number of bits available, the bottom-most bits are taken.

num_substreams

Number of substreams in this stream (read-only).

22 Chapter 2. Python API for spead2

https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/exceptions.html#ValueError

spead2, Release 4.3.1

UDP

Note that since UDP is an unreliable protocol, there is no guarantee that packets arrive.
For each constructor overload, the endpoints parameter can also be replaced by two parameters that contain the host-
name/IP address and port for a single substream (for backwards compatibility).
class spead2.send.UdpStream(thread_pool, endpoints, config=spead2.send.StreamConfig(),

buffer_size=DEFAULT_BUFFER_SIZE, interface_address='')

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• endpoints (List[Tuple[str, int]]) – Peer endpoints (one per substream)
• config (spead2.send.StreamConfig) – Stream configuration
• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set due
to OS limits.

• interface_address (str) – Source hostname/IP address (see tips about Routing).
class spead2.send.UdpStream(thread_pool, endpoints, config=spead2.send.StreamConfig(),

buffer_size=DEFAULT_BUFFER_SIZE, ttl)
Stream using UDP, with multicast TTL. Note that the regular constructor will also work with multicast, but does
not give any control over the TTL.

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• endpoints (List[Tuple[str, int]]) – Peer endpoints (one per substream)
• config (spead2.send.StreamConfig) – Stream configuration
• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set due
to OS limits.

• ttl (int) – Multicast TTL
class spead2.send.UdpStream(thread_pool, endpoints, config=spead2.send.StreamConfig(),

buffer_size=524288, ttl, interface_address)
Stream using UDP, with multicast TTL and interface address (IPv4 only).

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• endpoints (List[Tuple[str, int]]) – Peer endpoints (one per substream)
• config (spead2.send.StreamConfig) – Stream configuration
• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set due
to OS limits.

• ttl (int) – Multicast TTL
• interface_address (str) – Hostname/IP address of the interface on which to send the
data

class spead2.send.UdpStream(thread_pool, endpoints, config=spead2.send.StreamConfig(),
buffer_size=DEFAULT_BUFFER_SIZE, ttl, interface_index)

Stream using UDP, with multicast TTL and interface index (IPv6 only).

2.7. Sending 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

spead2, Release 4.3.1

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• endpoints (List[Tuple[str, int]]) – Peer endpoints (one per substream)
• config (spead2.send.StreamConfig) – Stream configuration
• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set due
to OS limits.

• ttl (int) – Multicast TTL
• interface_index (str) – Index of the interface on which to send the data

class spead2.send.UdpStream(thread_pool, socket, endpoints, config=spead2.send.StreamConfig())
Stream using UDP, with a pre-existing socket. The socket is duplicated by the stream, so the original can be closed
immediately to free up a file descriptor. The caller is responsible for setting any socket options. The socket must
not be connected.

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• socket (socket.socket) – UDP socket
• endpoints (List[Tuple[str, int]]) – Peer endpoints (one per substream)
• config (spead2.send.StreamConfig) – Stream configuration

class spead2.send.UdpStream(thread_pool, endpoints, config=spead2.send.StreamConfig(),
buffer_size=DEFAULT_BUFFER_SIZE, socket)

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• endpoints (List[Tuple[str, int]]) – Peer endpoints (one per substream)
• config (spead2.send.StreamConfig) – Stream configuration
• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set due
to OS limits.

TCP

TCP/IP is a reliable protocol, so heap delivery is guaranteed. However, if multiple threads all call send_heap() at the
same time, they can exceed the configured max_heaps and heaps will be dropped.
Because spead2 was originally designed for UDP, the default packet size in StreamConfig is quite small. Performance
can be improved by increasing it (but be sure the receiver is configured to handle larger packets).
TCP/IP is also a connection-oriented protocol, and does not support substreams. The endpoints must therefore contain
exactly one endpoint (it takes a list for consistency with UdpStream).
class spead2.send.TcpStream(thread_pool, endpoints, config=spead2.send.StreamConfig(),

buffer_size=DEFAULT_BUFFER_SIZE, interface_address='')

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• endpoints (List[Tuple[str, int]]) – Peer endpoint (must contain exactly one
element).

24 Chapter 2. Python API for spead2

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

• config (spead2.send.StreamConfig) – Stream configuration
• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set due
to OS limits.

• interface_address (str) – Source hostname/IP address (see tips about Routing).
class spead2.send.TcpStream(thread_pool, socket, config=spead2.send.StreamConfig())

Stream using an existing socket. The socket must already be connected to the peer, and the user is responsible for
setting any desired socket options. The socket is duplicated, so it can be closed to save resources.

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• socket (socket.socket) – TCP socket
• config (spead2.send.StreamConfig) – Stream configuration

Raw bytes

class spead2.send.BytesStream(thread_pool, config=spead2.send.StreamConfig())
Stream that collects packets in memory and makes the concatenated stream available.

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• config (spead2.send.StreamConfig) – Stream configuration

getvalue()

Return a copy of the memory buffer.
Return type

bytes

In-process transport

Refer to the separate documentation.

2.7.3 Asynchronous send

As for asynchronous receives, asynchronous sends are managed by asyncio. A stream can buffer up multiple heaps for
asynchronous send, up to the limit specified by max_heaps in the StreamConfig. If this limit is exceeded, heaps will
be dropped, and the returned future has an IOError exception set. An IOError could also indicate a low-level error
in sending the heap (for example, if the packet size exceeds the MTU).
The classes exist in the spead2.send.asyncio modules, and mostly implement the same constructors as the syn-
chronous classes. They implement the following interface (the class exists as a type annotation, but does not currently
exist at runtime):
class spead2.send.asyncio.AsyncStream

async_send_heap(heap, cnt=-1, substream_index=0, rate=-1.0)
Send a heap asynchronously. Note that this is not a coroutine: it returns a future. Adding the heap to the
queue is done synchronously, to ensure proper ordering.

Parameters

2.7. Sending 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/socket.html#socket.socket
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/exceptions.html#IOError

spead2, Release 4.3.1

• heap (spead2.send.Heap) – Heap to send
• cnt (int) – Heap cnt to send (defaults to auto-incrementing)
• rate (float) – Rate at which to transmit (defaults to the stream’s rate)

async_send_heaps(heaps, mode)
Send a group of heaps asynchronously. See Batching for more information. Note that this is not a coroutine:
it returns a future. Adding the heaps to the queue is done synchronously, to ensure proper ordering.
The parameters have the same meaning as for send_heaps().

Parameters
• heaps (List[spead2.send.HeapReference] | spead2.send.
HeapReferenceList) – A list of heaps to send

• mode (spead2.send.GroupMode) – Controls the packet ordering
flush()

Block until all enqueued heaps have been sent (or dropped).
async_flush()

Asynchronously wait for all enqueued heaps to be sent. Note that this only waits for heaps passed to
async_send_heap() prior to this call, not ones added while waiting.

TCP

For TCP, construction is slightly different: except when providing a custom socket, one uses a coroutine to connect:
async classmethod TcpStream.connect(*args, **kwargs)

Open a connection.
The arguments are the same as for the constructor of spead2.send.TcpStream.

2.7.4 Batching

Instead of sending one heap at a time, it is possible to pass a whole list of heaps to be sent at once. There are a few reasons
one might want to do this:

1. It is generally more efficient, particularly if the heaps are small.
2. The packets of the heaps can be sent in an interleaved order. This is useful when combined with Substreams, as

each substream can have a steady flow of packets rather than sending a full heap to one substream, then a full heap
to the next etc.

class spead2.send.HeapReference(heap, *, cnt=-1, substream_index=0, rate=-1.0)
A thin wrapper around a Heap, heap cnt and substream index, for passing to send_heaps(). The parameters
have the same meaning as the corresponding arguments to send_heap().

class spead2.send.GroupMode

Enumeration selecting the packet ordering for a group of heaps sent with send_heaps().
ROUND_ROBIN

Interleave the packets of the heaps. One packet is sent from each heap in turn (skipping those that have run
out of packets).

26 Chapter 2. Python API for spead2

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

spead2, Release 4.3.1

SERIAL

Send the heaps one after another.
Passing a large list has some overhead as the list has to be converted from Python to C++. If exactly the same list will
be used multiple times, this cost can be amortised by converting the list to a HeapReferenceList up front and then
using repeatedly.
class spead2.send.HeapReferenceList(heaps)

An opaque copy of a list of HeapReference. It can be passed to send_heaps() in place of a list. It can
also be indexed with a slice to create a new HeapReferenceList with a subset of the original heaps.

Parameters
heaps (List[spead2.send.HeapReference]) – The heap references to store

2.8 In-process transport

While SPEAD is generally deployed over UDP, it is less than ideal for writing tests:
• One has to deal with allocating port numbers and avoiding conflicts.
• The sender and receiver need to be running at the same time.
• If the receiver doesn’t keep up, it can drop packets.

To simplify unit testing, spead2 also offers an “in-process” transport. One creates a queue, then connects a sender and a
receiver to it. The queue has unbounded capacity, so one can safely send all the data first, then create the receiver later.
This unbounded capacity also means that it should not be used in production for high-volume streams, because it can
exhaust all your memory if the sender works faster than the receiver.
A queue can also be connected to multiple senders. It should generally not be connected to multiple receivers, because
they will each get some undefined subset of the packets, which won’t reassemble into the proper heaps. However, if you
set the packet size large enough that every heap is contained in one packet then it will work.

Warning: Even though the transport is reliable, a stream has a maximum number of outstanding heaps. Attempting
to send more heaps in parallel than the stream is configured to handle can lead to heaps being dropped. This is not
a problem when using a single thread with spead2.send.InprocStream.send_heap() (because it blocks
until the heap has been fully added to the queue), but needs to be considered when sending heaps in parallel with
spead2.send.asyncio.InprocStream or when using multiple threads.

2.8.1 Sending

class spead2.InprocQueue

add_packet(packet)

Add a packet directly to the queue.
stop()

Indicate end-of-stream to receivers. It is an error to add any more packets after this.
class spead2.send.InprocStream(thread_pool, queues, config)

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

2.8. In-process transport 27

spead2, Release 4.3.1

• queues (List[spead2.InprocQueue]) – Queues holding the generated packets (one per
substream).

• config (spead2.send.StreamConfig) – Stream configuration
queues

Get the queues passed to the constructor.
class spead2.send.asyncio.InprocStream(thread_pool, queues, config)

SPEAD over reliable in-process transport.

Note: Data may still be lost if the maximum number of in-flight heaps (set in the stream config) is exceeded.
Either set this value to more heaps than will ever be sent (which will use unbounded memory) or be sure to block
on the futures returned before exceeding the capacity.

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• queues (List[spead2.InprocQueue]) – Queue holding the data in flight
• config (spead2.send.StreamConfig) – Stream configuration

An asynchronous version of spead2.send.InprocStream. Refer to Asynchronous send for general details
about asynchronous transport.

2.8.2 Receiving

To connect a receiver to the the queue, use spead2.recv.Stream.add_inproc_reader().

2.9 Logging

Logging is done with the standard Python logging module, and logging can be configured with the usual utilities.
However, in the default build the debug logging is completely disabled for performance reasons. To enable it, you need
to set the Meson option max_log_level=debug. For example, if installing with pip, use

pip install --config-settings=setup-args=-Dmax_log_level=debug .

2.10 Support for ibverbs

Receiver performance can be significantly improved by using the Infiniband Verbs API instead of the BSD sockets API.
This is currently only tested on Linux with ConnectX® NICs. It depends on device managed flow steering (DMFS).
There are a number of limitations in the current implementation:

• Only IPv4 is supported.
• VLAN tagging, IP optional headers, and IP fragmentation are not supported.
• For sending, only multicast is supported.

28 Chapter 2. Python API for spead2

https://docs.python.org/3/library/logging.html#module-logging

spead2, Release 4.3.1

Within these limitations, it is quite easy to take advantage of this faster code path. The main difficulties are that one must
specify the IP address of the interface that will send or receive the packets, and that the CAP_NET_RAW capability may
be needed. The netifaces2 module can help find the IP address for an interface by name, and the spead2_net_raw tool
simplifies the process of getting the CAP_NET_RAW capability.

2.10.1 System configuration

ConnectX®-3

Add the following to /etc/modprobe.d/mlnx.conf:

options ib_uverbs disable_raw_qp_enforcement=1
options mlx4_core fast_drop=1
options mlx4_core log_num_mgm_entry_size=-1

Note: Setting log_num_mgm_entry_size to -7 instead of -1 will activate faster static device-managed flow steer-
ing. This has some limitations (refer to the manual for details), but can improve performance when capturing a large
number of multicast groups.

ConnectX®-4+, MLNX OFED up to 4.9

Add the following to /etc/modprobe.d/mlnx.conf:

options ib_uverbs disable_raw_qp_enforcement=1

All other cases

No system configuration is needed, but the CAP_NET_RAW capability is required. Running as root will achieve this; a full
discussion of Linux capabilities is beyond the scope of this manual. The spead2_net_raw utility can also be used to give
users access to this capability without exposing full root access. For more information, see the libvma documentation.

Multicast loopback

By default, multicast traffic sent using ibverbs can also be received on the same port. While convenient, this is a slow
path in the NIC, and can limit performance. To disable this loopback, write 1 to /sys/class/net/interface/
settings/force_local_lb_disable (note that the setting does not persist across reboots).

2.10.2 Receiving

The ibverbs API can be used programmatically by using an extra method of spead2.recv.Stream.
The configuration is specified using a spead.recv.UdpIbvConfig.
class spead2.recv.UdpIbvConfig(*, endpoints=[], interface_address='',

buffer_size=DEFAULT_BUFFER_SIZE,
max_size=DEFAULT_MAX_SIZE, comp_vector=0,
max_poll=DEFAULT_MAX_POLL)

Parameters

2.10. Support for ibverbs 29

https://github.com/SamuelYvon/netifaces-2
https://docs.nvidia.com/networking/display/MLNXENv495100/Flow+Steering
https://docs.mellanox.com/category/vma

spead2, Release 4.3.1

• endpoints (List[Tuple[str, int]]) – Peer endpoints
• interface_address (str) – Hostname/IP address of the interface which will be sub-
scribed

• buffer_size (int) – Requested memory allocation for work requests. It may be adjusted
to an integer number of packets.

• max_size (int) – Maximum packet size that will be accepted
• comp_vector (int) – Completion channel vector (interrupt) for asynchronous operation,
or a negative value to poll continuously. Polling should not be used if there are other users of
the thread pool. If a non-negative value is provided, it is taken modulo the number of available
completion vectors. This allows a number of streams to be assigned sequential completion
vectors and have them load-balanced, without concern for the number available.

• max_poll (int) – Maximum number of times to poll in a row, without waiting for an inter-
rupt (if comp_vector is non-negative) or letting other code run on the thread (if comp_vector
is negative).

The constructor arguments are also instance attributes. Note that they are implemented as properties that return
copies of the state, which means that mutating endpoints (for example, with append()) will not have any effect
as only the copy will be modified. The entire list must be assigned to update it.

spead2.recv.Stream.add_udp_ibv_reader(config)
Feed data from IPv4 traffic.

If supported by the NIC and the drivers, the receive code will automatically use a “multi-packet receive queue”, which
allows each packet to consume only the amount of space needed in the buffer. This is currently only supported on
ConnectX®-4+ with MLNX OFED drivers 5.0 or later (or upstream rdma-core). When in use, the max_size parameter
has little impact on performance, and is used only to reject larger packets.
When multi-packet receive queues are not supported, performance can be improved by making max_size as small as
possible for the intended data stream. This will increase the number of packets that can be buffered (because the buffer
is divided into fixed-size slots), and also improve memory efficiency by keeping data more-or-less contiguous.

Environment variables

An existing application can be forced to use ibverbs for all IPv4 readers, by setting the environment vari-
able SPEAD2_IBV_INTERFACE to the IP address of the interface to receive the packets. Note that calls to
spead2.recv.Stream.add_udp_reader() that pass an explicit interface will use that interface, overriding
SPEAD2_IBV_INTERFACE; in this case, SPEAD2_IBV_INTERFACE serves only to enable the override.
It is also possible to specify SPEAD2_IBV_COMP_VECTOR to override the completion channel vector from the default.
Note that this environment variable currently has no effect on senders.

2.10.3 Sending

Sending is done by using the class spead2.send.UdpIbvStream instead of spead2.send.UdpStream. It
has a different constructor, but the same methods. There is also a spead2.send.asyncio.UdpIbvStream class,
analogous to spead2.send.asyncio.UdpStream.
There is an additional configuration class for ibverbs-specific configuration:
class spead2.send.UdpIbvConfig(*, endpoints=[], interface_address='',

buffer_size=DEFAULT_BUFFER_SIZE, ttl=1, comp_vector=0,
max_poll=DEFAULT_MAX_POLL, memory_regions=[])

30 Chapter 2. Python API for spead2

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

Parameters
• endpoints (List[Tuple[str, int]]) – Peer endpoints (one per substream)
• interface_address (str) – Hostname/IP address of the interface which will be sub-
scribed

• buffer_size (int) – Requested memory allocation for work requests. It may be adjusted
to an integer number of packets.

• ttl (int) – Multicast TTL
• comp_vector (int) – Completion channel vector (interrupt) for asynchronous operation,
or a negative value to poll continuously. Polling should not be used if there are other users of
the thread pool. If a non-negative value is provided, it is taken modulo the number of available
completion vectors. This allows a number of streams to be assigned sequential completion
vectors and have them load-balanced, without concern for the number available.

• max_poll (int) – Maximum number of times to poll in a row, without waiting for an inter-
rupt (if comp_vector is non-negative) or letting other code run on the thread (if comp_vector
is negative).

• memory_regions (List[object]) – Objects implementing the buffer protocol that
will be used to hold item data. This is not required, but data stored in these buffers may be
transmitted directly without requiring a copy, yielding higher performance. There may be
platform-specific limitations on the size and number of these buffers.

The constructor arguments are also instance attributes. Note that they are implemented as properties that return
copies of the state, which means that mutating endpoints or memory_regions (for example, with append()) will
not have any effect as only the copy will be modified. The entire list must be assigned to update it.

class spead2.send.UdpIbvStream(thread_pool, config, udp_ibv_config)
Create a multicast IPv4 UDP stream using the ibverbs API

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• config (spead2.send.StreamConfig) – Stream configuration
• udp_ibv_config (spead2.send.UdpIbvConfig) – Additional stream configura-
tion

2.11 Chunking receiver

For an overview, refer to Chunking receiver. This page is a reference for the Python API.

2.11.1 Writing a place callback

A callback is needed to determine which chunk each heap belongs to and where it fits into that chunk. The callback is
made from a C++ thread, so it cannot be written in pure Python, or even use the Python C API. It needs to be compiled
code. The callback code should also not attempt to acquire the Global Interpreter Lock (GIL), as it may lead to a deadlock.
Once you’ve written the function (see below), it needs to be passed to spead2. The easiest way to do this is with scipy.
LowLevelCallable. However, it’s not strictly necessary to use scipy. The callback must be represented with a tuple
whose first element is a PyCapsule. The other elements are not used, but a reference to the tuple is held so this can be
used to keep things alive). The capsule’s pointer must be a function pointer to the code, the name must be the function
signature, and a user-defined pointer may be set as the capsule’s context.

2.11. Chunking receiver 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.html#scipy.LowLevelCallable
https://docs.scipy.org/doc/scipy/reference/generated/scipy.LowLevelCallable.html#scipy.LowLevelCallable
https://docs.python.org/3/c-api/capsule.html#c.PyCapsule

spead2, Release 4.3.1

For the place callback, the signature must be one of the following (exactly, with no whitespace changes):
• "void (void *, size_t)"

• "void (void *, size_t, void *)"

In the latter case, the capsule’s context is provided as the final argument. The first two arguments are a pointer to
spead2::recv::chunk_place_data and the size of that structure.
There are lots of ways to write compiled code and access the functions from Python: ctypes, cffi, cython, pybind11 are
some of the options. One for which spead2 provided some extra support is numba:
spead2.recv.numba.chunk_place_data

Numba record type representing the C structure used in the chunk placement callback.
Numba doesn’t (as of 0.54) support pointers in records, so the pointer fields are represented as integers. Use
spead2.numba.intp_to_voidptr() to convert them to void pointers then numba.carray() to con-
vert the void pointer to an array of the appropriate size and dtype.

spead2.numba.intp_to_voidptr(typingctx, src)
Convert an integer (of type intp or uintp) to a void pointer.
This is useful because numba doesn’t (as of 0.54) support putting pointers into Records. They have to be smuggled
in as intp, then converted to pointers with this function.

2.11.2 Reference

class spead2.recv.Chunk(**kwargs)
The attributes can also be used as keywords arguments to the constructor. This class is designed to allow subclassing,
and subclass properties will round-trip through the stream.
data

Data storage for a chunk. This can be set to any object that supports the Python buffer protocol, as long as it is
contiguous and writable. Examples include (contiguous) numpy arrays, bytearray and memoryview. It can
also be set to None to clear it.
present

Data storage for flags indicating presence of heaps within the chunk. This can be set to any object that supports the
Python buffer protocol, as long as it is contiguous and writable. It can also be set to None to clear it.
extra

Data storage for extra data to be written by the place callback. This can be set to any object that supports the Python
buffer protocol, as long as it is contiguous and writable. It can also be set to None to clear it.
chunk_id

The chunk ID determined by the placement function.
stream_id

Stream ID of the stream from which the chunk originated.
class spead2.recv.ChunkStreamConfig(**kwargs)

Parameters for a ChunkStream. The configuration options can either be passed to the constructor (as keyword
arguments) or set as properties after construction.

Parameters

32 Chapter 2. Python API for spead2

https://numba.readthedocs.io/en/latest/reference/utils.html#numba.carray
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#memoryview

spead2, Release 4.3.1

• items (List[int]) – The items whose immediate values should be passed to the place
function. Accessing this property returns a copy, so it cannot be updated with append or
other mutating operations. Assign a complete list.

• max_chunks (int) – The maximum number of chunks that can be live at the same time. A
value of 1 means that heaps must be received in order: once a chunk is started, no heaps from
a previous chunk will be accepted.

• place (tuple) – SeeWriting a place callback.
• max_heap_extra (int) – The maximum amount of data a placement function may write
to spead2::recv::chunk_place_data::extra.

Raises
ValueError – if max_chunks is zero.

enable_packet_presence(payload_size: int)

Enable the packet presence feature. The payload offset of each packet is divided by payload_size and added to the
heap index before indexing spead2.recv.Chunk.present.
disable_packet_presence()

Disable the packet presence feature enabled by enable_packet_presence().
packet_presence_payload_size

The payload_size if packet presence is enabled, or 0 if not.
DEFAULT_MAX_CHUNKS

Default value for max_chunks.
class spead2.recv.ChunkRingbuffer(maxsize)

Ringbuffer holding Chunks. The interface is modelled on Queue, although the exceptions are different. It also
implements the iterator protocol.
Once a chunk has been added to a ringbuffer it should not be accessed again until it is retrieved from a ringbuffer
(either the same one, or more typically, a different one after it has been filled in by ChunkRingStream).
maxsize

Maximum capacity of the ringbuffer.
data_fd

A file descriptor that is readable when there is data available. This will not normally be used directly, but is used
in the implementation of spead2.recv.asyncio.ChunkRingbuffer.
space_fd

A file descriptor that is readable when there is free space available. This will not normally be used directly, but is
used in the implementation of spead2.recv.asyncio.ChunkRingbuffer.
qsize()

The current number of items in the ringbuffer.
empty()

True if the ringbuffer is empty, otherwise false.

2.11. Chunking receiver 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

full()

True if the ringbuffer is full, otherwise false.
get()

Retrieve an item from the ringbuffer, blocking if necessary.
Raises

spead2.Stopped – if the ringbuffer was stopped before an item became available.
get_nowait()

Retrieve an item from the ringbuffer, raising an exception if none is available.
Raises

• spead2.Stopped – if the ringbuffer is stopped and empty.
• spead2.Empty – if the ringbuffer is empty.

put(chunk)

Put an item into the ringbuffer, blocking until there is space if necessary.
Raises

spead2.Stopped – if the ringbuffer was stopped before space became available.
put_nowait(chunk)

Put an item into the ringbuffer, raising an exception if there is no space available.
Raises

• spead2.Stopped – if the ringbuffer is stopped.
• spead2.Full – if the ringbuffer is full.

stop()

Shut down the ringbuffer. Producers will no longer be able to add new items. Consumers will be able to retrieve
existing items, after which they will receive spead2.Stopped, and iterators will terminate.
Returns true if this call stopped the ringbuffer, otherwise false.
add_producer()

Register a new producer. Producers only need to call this if they want to call remove_producer().
remove_producer()

Indicate that a producer registered with add_producer() is finished with the ringbuffer. If this was the last
producer, the ringbuffer is stopped. Returns true if this call stopped the ringbuffer, otherwise false.

class spead2.recv.asyncio.ChunkRingbuffer(maxsize)
Asynchronous chunk ringbuffer.
It provides asynchronous versions of the blocking functions, and the asychronous iterator protocol.
async get()

Get a chunk from the ringbuffer asynchronously.
Raises

spead2.Stopped – if the ringbuffer is stopped before a chunk becomes available

34 Chapter 2. Python API for spead2

spead2, Release 4.3.1

async put(chunk)
Put an item into the ringbuffer asynchronously.

Raises
spead2.Stopped – if the ringbuffer is stopped

class spead2.recv.ChunkRingStream(thread_pool, config, chunk_config, data_ringbuffer, free_ringbuffer)
Stream that works on chunks. While it is not a direct subclass, it implements most of the same functions as
spead2.recv.Stream, in particular for adding transports.

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• config (spead2.recv.StreamConfig) – Stream configuration
• chunk_config (spead2.recv.ChunkStreamConfig) – Chunking configuration
• data_ringbuffer (spead2.recv.ChunkRingbuffer) – Ringbuffer onto which
the stream will place completed chunks.

• free_ringbuffer (spead2.recv.ChunkRingbuffer) – Ringbuffer from which
the stream will obtain new chunks.

data_ringbuffer

The data ringbuffer given to the constructor.
free_ringbuffer

The free ringbuffer given to the constructor.
add_free_chunk(chunk)

Add a chunk to the free ringbuffer. This takes care of zeroing out the Chunk.present array, and it will
suppress the spead2.Stopped exception if the free ringbuffer has been stopped.
If the free ring is full, it will raise spead2.Full rather than blocking. The free ringbuffer should be
constructed with enough slots that this does not happen.

2.12 Chunking stream groups

For an overview, refer to Chunking stream groups. This page is a reference for the Python API. It extends the API for
chunks.
class spead2.recv.ChunkStreamGroupConfig(**kwargs)

Parameters for a chunk stream group. The configuration options can either be passed to the constructor (as keyword
arguments) or set as properties after construction.

Parameters
• max_chunks (int) – The maximum number of chunks that can be live at the same time.
• eviction_mode (EvictionMode) – The chunk eviction mode.

class EvictionMode

Eviction mode when it is necessary to advance the group window. See the overview for more details.
LOSSY

force streams to release incomplete chunks

2.12. Chunking stream groups 35

https://docs.python.org/3/library/functions.html#int

spead2, Release 4.3.1

LOSSLESS

a chunk will only be marked ready when all streams have marked it ready
class spead2.recv.ChunkStreamRingGroup(config, data_ringbuffer, free_ringbuffer)

Stream group that uses ringbuffers to manage chunks.
When a fresh chunk is needed, it is retrieved from a ringbuffer of free chunks (the “free ring”). When a chunk is
flushed, it is pushed to a “data ring”. These may be shared between groups, but both will be stopped as soon as any
of the members streams are stopped. The intended use case is parallel groups that are started and stopped together.
It behaves like a Sequence of the contained streams.

Parameters
• config (spead2.recv.ChunkStreamGroupConfig) – Group configuration
• data_ringbuffer (spead2.recv.ChunkRingbuffer) – Ringbuffer onto which
the completed chunks are placed.

• free_ringbuffer (spead2.recv.ChunkRingbuffer) – Ringbuffer from which
new chunks are obtained.

data_ringbuffer

The data ringbuffer given to the constructor.
free_ringbuffer

The free ringbuffer given to the constructor.
add_free_chunk(chunk)

Add a chunk to the free ringbuffer. This takes care of zeroing out the Chunk.present array, and it will
suppress the spead2.Stopped exception if the free ringbuffer has been stopped.
If the free ring is full, it will raise spead2.Full rather than blocking. The free ringbuffer should be
constructed with enough slots that this does not happen.

emplace_back(thread_pool, config, chunk_stream_config)
Add a new stream.

Parameters
• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O
• config (spead2.recv.StreamConfig) – Stream configuration
• chunk_config (spead2.recv.ChunkStreamConfig) – Chunking configuration

Return type
spead2.recv.ChunkStreamGroupMember

class spead2.recv.ChunkStreamGroupMember

A component stream in a ChunkStreamRingGroup. This class cannot be instantiated directly. Use
ChunkStreamRingGroup.emplace_back() instead.
It provides the same methods for adding readers as spead2.recv.Stream.

36 Chapter 2. Python API for spead2

https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence

CHAPTER

THREE

C++ API FOR SPEAD2

The C++ API is at a lower level than the Python API. In particular, item values are treated as uninterpreted binary blobs.
The protocol is directly tied to numpy’s type system, so it is not practical to implement this in C++. The C++ API is thus
best suited to situations which require the maximum possible performance and where the data formats can be fixed in
advance.
There is also no equivalent to the spead2.ItemGroup and spead2.send.HeapGenerator classes. The user
is responsible for maintaining previously seen descriptors (if they are desired) and tracking which descriptors and items
need to be inserted into heaps.
The C++ documentation is far from complete. As a first step, consult the Python documentation; in many cases it is
just wrapping the C++ interface with Pythonic names, whereas the C++ interface uses lowercase with underscores for all
names. If that doesn’t help, consult the Doxygen-style comments in the source code.
The compiler and link flags necessary for compiling and linking against spead2 can be found with pkg-config i.e.,

• pkg-config --cflags spead2 to get the compiler flags
• pkg-config --libs --static spead2 to get the linker flags

Note that when installed with the default setup on a GNU/Linux system, the spead2.pc file is installed outside
pkg-config’s default search path, and you need to set PKG_CONFIG_PATH to /usr/local/lib/pkgconfig
first.

3.1 C++ API stability

The C++ API is less stable between versions than the Python API. The most-derived classes defining specific transports
are expected to be stable. Applications that subclass the base classes to define new transports may be broken by future
API changes, as there is still room for improvement in the API between these classes and the core.

3.2 Asynchronous I/O

The C++ API uses Boost.Asio for asynchronous operations. There is a spead2::thread_pool class (essentially the
same as the Python spead2.ThreadPool class). However, it is not required to use this, and you may for example
run everything in one thread to avoid multi-threading issues.

class thread_pool
Combination of a boost::asio::io_service with a set of threads to handle the callbacks.
The threads are created by the constructor and shut down and joined in the destructor.
Subclassed by spead2::thread_pool_wrapper

37

spead2, Release 4.3.1

Public Functions

thread_pool(int num_threads, const std::vector<int> &affinity)
Construct with explicit core affinity for the threads.
The affinity list can be shorter or longer than num_threads. Threads are allocated in round-robin fashion to
cores. Failures to set affinity are logged but do not cause an exception.

inline boost::asio::io_service &get_io_service()
Retrieve the embedded io_service.

void stop()
Shut down the thread pool.

Public Static Functions

static void set_affinity(int core)
Set CPU affinity of current thread.

Classes that perform asynchronous operations take a parameter of type spead2::io_service_ref. This can be
(implicitly) initialised from either a boost::asio::io_service reference, a spead2::thread_pool refer-
ence, or a std::shared_ptr<spead2::thread_pool>. In the last case, the receiving class retains a copy of
the shared pointer, providing convenient lifetime management of a thread pool.

class io_service_ref
A helper class that holds a reference to a boost::asio::io_service, and optionally a shared pointer to a
thread_pool.
It is normally not explicitly constructed, but other classes that need an io_service take it
as an argument and store it so that they can accept any of io_service, thread_pool or
std::shared_ptr<thread_pool>, and in the last case they hold on to the reference.

Public Functions

io_service_ref(boost::asio::io_service&)
Construct from a reference to an io_service.

io_service_ref(thread_pool&)
Construct from a reference to a thread_pool.

template<typename T, typename SFINAE = std::enable_if_t<std::is_convertible_v<T*, thread_pool*>>>
io_service_ref(std::shared_ptr<T>)

Construct from a shared pointer to a thread_pool.
This is templated so that it will also accept a shared pointer to a subclass of thread_pool.

boost::asio::io_service &operator*() const
Return the referenced io_service.

boost::asio::io_service *operator->() const
Return a pointer to the referenced io_service.

std::shared_ptr<thread_pool> get_shared_thread_pool() const &
Return the shared pointer to the thread_pool, if constructed from one.

38 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

std::shared_ptr<thread_pool> &&get_shared_thread_pool() &&
Return the shared pointer to the thread_pool, if constructed from one.
This overload returns an rvalue reference, allowing the shared pointer to be moved out of a temporary.

A number of the APIs use callbacks. These follow the usual Boost.Asio guarantee that they will always be called from
threads running boost::asio::io_service::run(). If using a thread_pool, this will be one of the threads
managed by the pool. Additionally, callbacks for a specific stream are serialised, but there may be concurrent callbacks
associated with different streams.

3.3 Receiving

3.3.1 Heaps

Unlike the Python bindings, the C++ bindings expose three heap types: live heaps (spead2::recv::live_heap)
are used for heaps being constructed, and may be missing data; frozen heaps (spead2::recv::heap) always have
all their data; and incomplete heaps (spead2::recv::incomplete_heap) are frozen heaps that are missing data.
Frozen heaps can be move-constructed from live heaps, which will typically be done in the callback.

class live_heap
A SPEAD heap that is in the process of being received.
Once it is fully received, it is converted to a heap for further processing.
Any SPEAD-64-* flavour can be used, but all packets in the heap must use the same flavour. It may be possible to
relax this, but it hasn’t been examined, and may cause issues for decoding descriptors (whose format depends on
the flavour).
A heap can be:

• complete: a heap length item was found in a packet, and we have received all the payload corresponding to
it. No more packets are expected.

• contiguous: the payload we have received is a contiguous range from 0 up to some amount, and cover all
items described in the item pointers.

• incomplete: not contiguous A complete heap is also contiguous, but not necessarily the other way around.
Only contiguous heaps can be frozen to heap, and only incomplete heaps can be frozen to incomplete_heap.

Public Functions

bool is_complete() const
True if the heap is complete.

bool is_contiguous() const
True if the heap is contiguous.

bool is_end_of_stream() const
True if an end-of-stream heap control item was found.

inline s_item_pointer_t get_cnt() const
Retrieve the heap ID.

inline bug_compat_mask get_bug_compat() const
Get protocol bug compatibility flags.

3.3. Receiving 39

spead2, Release 4.3.1

class heap : public spead2::recv::heap_base
Received heap that has been finalised.

Public Functions

explicit heap(live_heap &&h)
Freeze a heap, which must satisfy live_heap::is_contiguous.
The original heap is destroyed.

descriptor to_descriptor() const
Extract descriptor fields from the heap.
Any missing fields are default-initialized. This should be used on a heap constructed from the content of a
descriptor item.
The original PySPEAD package (version 0.5.2) does not follow the specification here. The macros in com-
mon_defines.h can be used to control whether to interpret the specification or be bug-compatible.
The protocol allows descriptors to use immediate-mode items, but the decoding of these into variable-length
strings is undefined. This implementation will discard such descriptor fields.

std::vector<descriptor> get_descriptors() const
Extract and decode descriptors from this heap.

inline s_item_pointer_t get_cnt() const
Get heap ID.

inline const flavour &get_flavour() const
Get protocol flavour used.

inline const std::vector<item> &get_items() const
Get the items from the heap.
This includes descriptors, but excludes any items with ID <= 4.

bool is_ctrl_item(ctrl_mode value) const
Convenience function to check whether any of the items is a STREAM_CTRL_ID item with value value.

bool is_start_of_stream() const
Convenience function to check whether any of the items is a CTRL_STREAM_START.

bool is_end_of_stream() const
Convenience function to check whether any of the items is a CTRL_STREAM_STOP.

inline const memory_allocator::pointer &get_payload() const
Get the payload pointer.
This will return an empty pointer unless keep_payload was set in the constructor. This is not normally needed,
but has applications in some advanced use cases.

class incomplete_heap : public spead2::recv::heap_base
Received heap that has been finalised, but which is missing data.
The payload and any items that refer to the payload are discarded.

40 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

Public Functions

incomplete_heap(live_heap &&h, bool keep_payload, bool keep_payload_ranges)
Freeze a heap.
The original heap is destroyed.

Parameters
• h – The heap to freeze.
• keep_payload – If true, transfer the payload memory allocation from the live heap to
this object. If false, discard it.

• keep_payload_ranges – If true, store information that allows get_payload_ranges to
work.

inline s_item_pointer_t get_heap_length() const
Heap payload length encoded in packets (-1 for unknown)

inline s_item_pointer_t get_received_length() const
Number of bytes of payload received.

std::vector<std::pair<s_item_pointer_t, s_item_pointer_t>> get_payload_ranges() const
Return a list of contiguous ranges of payload that were received.
This is intended for special cases where a custom memory allocator was used to channel the payload into a
caller-managed area, so that the caller knows which parts of that area have been filled in.
If keep_payload_ranges was false in the constructor, returns an empty list.

inline s_item_pointer_t get_cnt() const
Get heap ID.

inline const flavour &get_flavour() const
Get protocol flavour used.

inline const std::vector<item> &get_items() const
Get the items from the heap.
This includes descriptors, but excludes any items with ID <= 4.

bool is_ctrl_item(ctrl_mode value) const
Convenience function to check whether any of the items is a STREAM_CTRL_ID item with value value.

bool is_start_of_stream() const
Convenience function to check whether any of the items is a CTRL_STREAM_START.

bool is_end_of_stream() const
Convenience function to check whether any of the items is a CTRL_STREAM_STOP.

inline const memory_allocator::pointer &get_payload() const
Get the payload pointer.
This will return an empty pointer unless keep_payload was set in the constructor. This is not normally needed,
but has applications in some advanced use cases.

struct item
An item extracted from a heap.
Subclassed by spead2::recv::item_wrapper

3.3. Receiving 41

spead2, Release 4.3.1

Public Members

s_item_pointer_t id
Item ID.

std::uint8_t *ptr
Start of memory containing value.

std::size_t length
Length of memory.

item_pointer_t immediate_value
The immediate interpreted as an integer (undefined if not immediate)

bool is_immediate
Whether the item is immediate.

struct descriptor
An unpacked descriptor.
If numpy_header is non-empty, it overrides format and shape.

Public Members

s_item_pointer_t id = 0
SPEAD ID.

std::string name
Short name.

std::string description
Long description.

std::vector<std::pair<char, s_item_pointer_t>> format
Legacy format.
Each element is a specifier character (e.g. ‘u’ for unsigned) and a bit width.

std::vector<s_item_pointer_t> shape
Shape.
Elements are either non-negative, or -1 is used to indicate a variable-length size. At most one dimension may
be variable-length.

std::string numpy_header
Description in the format used in .npy files.

42 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

3.3.2 Streams

At the lowest level, heaps are given to the application via a callback to a virtual function. While this callback is running,
no new packets can be received from the network socket, so this function needs to complete quickly to avoid data loss
when using UDP. To use this interface, subclass spead2::recv::stream and implement heap_ready() and
optionally override stop_received().
Note that some public functions are incorrectly listed as protected below due to limitations of the documentation tools.

class stream_config
Parameters for a receive stream.

Public Functions

stream_config &set_max_heaps(std::size_t max_heaps)
Set maximum number of partial heaps that can be live at one time (per substream).
This affects how intermingled heaps can be (due to out-of-order packet delivery) before heaps get dropped.

inline std::size_t get_max_heaps() const
Get maximum number of partial heaps that can be live at one time.

stream_config &set_substreams(std::size_t substreams)
Set number of substreams.
The substream is determined by taking the heap cnt modulo the number of substreams. The value set by
set_max_heaps applies independently for each substream.

inline std::size_t get_substreams() const
Get number of substreams.

stream_config &set_memory_allocator(std::shared_ptr<memory_allocator> allocator)
Set an allocator to use for allocating heap memory.

inline const std::shared_ptr<memory_allocator> &get_memory_allocator() const
Get allocator for allocating heap memory.

stream_config &set_memcpy(packet_memcpy_function memcpy)
Set an alternative memcpy function for copying heap payload.

stream_config &set_memcpy(memcpy_function memcpy)
Set an alternative memcpy function for copying heap payload.

stream_config &set_memcpy(memcpy_function_id id)
Set builtin memcpy function to use for copying heap payload.

inline const packet_memcpy_function &get_memcpy() const
Get memcpy function for copying heap payload.

stream_config &set_stop_on_stop_item(bool stop)
Set whether to stop the stream when a stop item is received.

inline bool get_stop_on_stop_item() const
Get whether to stop the stream when a stop item is received.

stream_config &set_allow_unsized_heaps(bool allow)
Set whether to allow heaps without HEAP_LENGTH.

3.3. Receiving 43

spead2, Release 4.3.1

inline bool get_allow_unsized_heaps() const
Get whether to allow heaps without HEAP_LENGTH.

stream_config &set_allow_out_of_order(bool allow)
Set whether to allow out-of-order packets within a heap.

inline bool get_allow_out_of_order() const
Get whether to allow out-of-order packets within a heap.

stream_config &set_bug_compat(bug_compat_mask bug_compat)
Set bug compatibility flags.

inline bug_compat_mask get_bug_compat() const
Get bug compatibility flags.

stream_config &set_stream_id(std::uintptr_t stream_id)
Set a stream ID.

inline std::uintptr_t get_stream_id() const
Get the stream ID.

stream_config &set_explicit_start(bool explicit_start)
Set the explicit start control.
If explicit start is enabled, no data will be received on the stream until stream::start is called, and no readers
can be added afterwards.

inline bool get_explicit_start() const
Get the explicit start flag.

std::size_t add_stat(std::string name, stream_stat_config::mode mode =
stream_stat_config::mode::COUNTER)

Add a new custom statistic.
Returns the index to use with stream_stats.

Throws
std::invalid_argument – if name already exists.

inline const std::vector<stream_stat_config> &get_stats() const
Get the stream statistics (including the core ones)

std::size_t get_stat_index(const std::string &name) const
Helper to get the index of a specific statistic.

Throws
std::out_of_range – if name is not a known statistic.

inline std::size_t next_stat_index() const
The index that will be returned by the next call to add_stat.

class stream : protected spead2::recv::stream_base
Stream that is fed by subclasses of reader.
The public interface to this class is thread-safe.
Subclassed by spead2::recv::chunk_stream, spead2::recv::chunk_stream_group_member,
spead2::recv::ring_stream_base

44 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

Public Functions

template<typename T, typename ...Args>
inline void emplace_reader(Args&&... args)

Add a new reader by passing its constructor arguments, excluding the initial io_service and owner arguments.
void start()

Start the stream.
This is only needed if the config specifies explicit start (see stream_config::set_explicit_start). In that case, no
new readers can be added after starting the stream.

virtual void stop()
Stop the stream.
After this returns, the io_service may still have outstanding completion handlers, but they should be no-ops
when they’re called.
In most cases subclasses should override stop_received rather than this function. However, if heap_ready can
block indefinitely, this function should be overridden to unblock it before calling the base implementation.

inline const stream_config &get_config() const
Get the stream’s configuration.

stream_stats get_stats() const
Return statistics about the stream.
See the Python documentation.

Protected Functions

inline const stream_config &get_config() const
Get the stream’s configuration.

void flush()
Flush the collection of live heaps, passing them to heap_ready.

stream_stats get_stats() const
Return statistics about the stream.
See the Python documentation.

A potentially more convenient interface is spead2::recv::ring_stream<Ringbuffer>, which
places received heaps into a fixed-size thread-safe ring buffer. Another thread can then pull from this
ring buffer in a loop. The template parameter selects the ringbuffer implementation. The default is
a good light-weight choice, but if you need to use select()-like functions to wait for data, you
can use spead2::ringbuffer<spead2::recv::live_heap, spead2::semaphore_fd,
spead2::semaphore>.

class ring_stream_config
Parameters for configuring ring_stream.
Subclassed by spead2::recv::ring_stream_config_wrapper

3.3. Receiving 45

spead2, Release 4.3.1

Public Functions

ring_stream_config &set_heaps(std::size_t heaps)
Set capacity of the ring buffer.

inline std::size_t get_heaps() const
Get capacity of the ring buffer.

ring_stream_config &set_contiguous_only(bool contiguous_only)
Set whether only contiguous heaps are pushed to the ring buffer.

inline bool get_contiguous_only() const
Get whether only contiguous heaps are pushed to the ring buffer.

template<typename Ringbuffer = ringbuffer<live_heap>>

class ring_stream : public spead2::recv::ring_stream_base
Specialisation of stream that pushes its results into a ringbuffer.
The ringbuffer class may be replaced, but must provide the same interface as ringbuffer. If the ring buffer fills up,
add_packet will block the reader.
On the consumer side, heaps are automatically frozen as they are extracted.
This class is thread-safe.

Public Functions

explicit ring_stream(io_service_ref io_service, const stream_config &config = stream_config(), const
ring_stream_config &ring_config = ring_stream_config())

Constructor.
Parameters

• io_service – I/O service (also used by the readers).
• config – Stream configuration
• ring_config – Ringbuffer configuration

heap pop()
Wait until a contiguous heap is available, freeze it, and return it; or until the stream is stopped.

Throws
ringbuffer_stopped – if stop has been called and there are no more contiguous heaps.

template<typename ...SemArgs>
live_heap pop_live(SemArgs&&... sem_args)

Wait until a heap is available and return it; or until the stream is stopped.
Parameters

sem_args – Arbitrary arguments to pass to the data semaphore
Throws

ringbuffer_stopped – if stop has been called and there are no more heaps.
heap try_pop()

Like pop, but if no contiguous heap is available, throws spead2::ringbuffer_empty.
Throws

46 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

• ringbuffer_empty – if there is no contiguous heap available, but the stream has not
been stopped

• ringbuffer_stopped – if stop has been called and there are no more contiguous heaps.
live_heap try_pop_live()

Like pop_live, but if no heap is available, throws spead2::ringbuffer_empty.
Throws

• ringbuffer_empty – if there is no heap available, but the stream has not been stopped
• ringbuffer_stopped – if stop has been called and there are no more heaps.

spead2::detail::ringbuffer_iterator<ring_stream> begin()
Start iteration over the heaps in the ringbuffer.
This does not return a full-fledged iterator. It is intended only to enable a range-based for loop over the stream,
and any other use of the iterator is unsupported.
For example: for (spead2::recv::heap heap : stream) { ... }

spead2::detail::ringbuffer_sentinel end()
End iterator (see begin).

inline const ring_stream_config &get_ring_config() const
Get the ringbuffer configuration passed to the constructor.

3.3.3 Readers

Reader classes are constructed inside a stream by calling spead2::recv::stream::emplace_reader().

class udp_reader : public spead2::recv::udp_reader_base
Asynchronous stream reader that receives packets over UDP.

Public Functions

udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size =
default_max_size, std::size_t buffer_size = default_buffer_size)

Constructor.
If endpoint is a multicast address, then this constructor will subscribe to the multicast group, and also set
SO_REUSEADDR so that multiple sockets can be subscribed to the multicast group.

Parameters
• owner – Owning stream
• endpoint – Address on which to listen
• max_size – Maximum packet size that will be accepted.
• buffer_size – Requested socket buffer size. Note that the operating system might not
allow a buffer size as big as the default.

3.3. Receiving 47

spead2, Release 4.3.1

udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size, std::size_t
buffer_size, const boost::asio::ip::address &interface_address)

Constructor with explicit interface address (IPv4 only).
This overload is designed for use with multicast, but can also be used with a unicast endpoint as long as the
address matches the interface address.
When a multicast group is used, the socket will have SO_REUSEADDR set, so that multiple sockets can
all listen to the same multicast stream. If you want to let the system pick the interface for the multicast
subscription, use boost::asio::ip::address_v4::any(), or use the default constructor.

Parameters
• owner – Owning stream
• endpoint – Address and port
• max_size – Maximum packet size that will be accepted.
• buffer_size – Requested socket buffer size.
• interface_address – Address of the interface which should join the group

Throws
• std::invalid_argument – If endpoint is not an IPv4 multicast address and does not
match interface_address.

• std::invalid_argument – If interface_address is not an IPv4 address
udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size, std::size_t

buffer_size, unsigned int interface_index)
Constructor with explicit multicast interface index (IPv6 only).
The socket will have SO_REUSEADDR set, so that multiple sockets can all listen to the samemulticast stream.
If you want to let the system pick the interface for the multicast subscription, set interface_index to 0, or use
the standard constructor.

See also:
if_nametoindex(3)

Parameters
• owner – Owning stream
• endpoint – Multicast group and port
• max_size – Maximum packet size that will be accepted.
• buffer_size – Requested socket buffer size.
• interface_index – Address of the interface which should join the group

udp_reader(stream &owner, boost::asio::ip::udp::socket &&socket, std::size_t max_size = default_max_size)
Constructor using an existing socket.
This allows socket options (e.g., multicast subscriptions) to be fine-tuned by the caller. The socket must
already be bound to the desired endpoint. There is no special handling of multicast subscriptions or socket
buffer sizes here.

Parameters

48 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

• owner – Owning stream
• socket – Existing socket which will be taken over. It must use the same I/O service as
owner.

• max_size – Maximum packet size that will be accepted.

class tcp_reader : public spead2::recv::reader
Asynchronous stream reader that receives packets over TCP.

Public Functions

tcp_reader(stream &owner, const boost::asio::ip::tcp::endpoint &endpoint, std::size_t max_size =
default_max_size, std::size_t buffer_size = default_buffer_size)

Constructor.
Parameters

• owner – Owning stream
• endpoint – Address on which to listen
• max_size – Maximum packet size that will be accepted.
• buffer_size – Requested socket buffer size. Note that the operating system might not
allow a buffer size as big as the default.

tcp_reader(stream &owner, boost::asio::ip::tcp::acceptor &&acceptor, std::size_t max_size =
default_max_size)

Constructor using an existing acceptor object.
This allows acceptor objects to be created and fine-tuned by users before handing them over. The acceptor
object must be already bound.

Parameters
• owner – Owning stream
• acceptor – Acceptor object, must be bound
• max_size – Maximum packet size that will be accepted.

Private Functions

tcp_reader(stream &owner, boost::asio::ip::tcp::acceptor &&acceptor, std::size_t max_size, std::size_t
buffer_size)

Base constructor, used by the other constructors.
Parameters

• owner – Owning stream
• acceptor – Acceptor object, must be bound
• max_size – Maximum packet size that will be accepted.
• buffer_size – Requested socket buffer size. Note that the operating system might not
allow a buffer size as big as the default.

3.3. Receiving 49

spead2, Release 4.3.1

class mem_reader : public spead2::recv::reader
Reader class that feeds data from a memory buffer to a stream.
The caller must ensure that the underlying memory buffer is not destroyed before this class.

Note: For simple cases, use mem_to_stream instead. This class is only necessary if one wants to plug in to a
stream.

Subclassed by spead2::recv::buffer_reader

class udp_pcap_file_reader : public spead2::recv::udp_reader_base
Reader class that feeds data from a pcap file to a stream.
An optional filter selects a subset of the packets in the capture file.

Public Functions

udp_pcap_file_reader(stream &owner, const std::string &filename, const std::string &filter = "")
Constructor.

Parameters
• owner – Owning stream
• filename – Filename of the capture file
• filter – Filter to apply to packets from the capture file

Throws
std::runtime_error – if filename could not read

3.3.4 Memory allocators

In addition to the memory allocators described in Memory allocators, new allocators can be created
by subclassing spead2::memory_allocator. For an allocator set on a stream, a pointer to a
spead2::recv::packet_header is passed as a hint to the allocator, allowing memory to be placed ac-
cording to information in the packet. Note that if the stream_config has been configured to allow out-of-order
packets then this could be any packet from the heap, rather than the first one.

class memory_allocator : public std::enable_shared_from_this<memory_allocator>
Polymorphic class for managing memory allocations in a memory pool.
This can be overloaded to provide custom memory allocations.
Subclassed by spead2::memory_pool, spead2::mmap_allocator, spead2::recv::detail::chunk_stream_allocator<CM
>, spead2::unittest::legacy_allocator, spead2::unittest::mock_allocator

50 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

Public Functions

virtual pointer allocate(std::size_t size, void *hint)
Allocate size bytes of memory.
The default implementation uses new and pre-faults the memory.
The pointer type uses memory_allocator::deleter as the deleter. If the memory needs to be freed by
something other than delete[] then pass a function object when constructing the pointer.

Parameters
• size – Number of bytes to allocate
• hint – Usage-dependent extra information

Throws
std::bad_alloc – if allocation failed

Returns
Pointer to newly allocated memory

Private Functions

virtual void free(std::uint8_t *ptr, void *user)
Free memory previously returned from allocate.
This is kept only for backwards compatibility, so that existing allocators that override it will continue to work.

Parameters
• ptr – Value returned by allocate
• user – User-defined handle stored in the deleter by allocate

class deleter : public std::function<void(std::uint8_t*)>
Deleter for pointers allocated by this allocator.
This class derives from std::function, so it can be constructed with any deleter at run time. In
particular, this means that std::unique_ptr<std::uint8_t[], D> can be converted to mem-
ory_allocator::pointer for any deleter D.
For backwards compatibility, it can also be constructed from a shared pointer to an allocator and an arbitrary void
pointer, in which case the deletion is performed by calling memory_allocator::free.

Public Functions

const std::shared_ptr<memory_allocator> &get_allocator() const
If the backwards-compatibility constructor was used, return the stored allocator.
Otherwise, returns a null pointer.

void *get_user() const
If the backwards-compatibility constructor was used, return the stored user pointer.
Otherwise, returns a null pointer.

The file examples/gdrapi_example.cu in the spead2 source distribution shows an example of using a custom
memory allocator to allocate memory for heaps on the GPU.

3.3. Receiving 51

spead2, Release 4.3.1

3.3.5 Custom memory scatter

In specialised high-bandwidth cases, the overhead of assembling heaps in temporary storage before scattering the data
into other arrangements can be very high. It is possible (since 1.11) to take complete control over the transfer of the
payload of the SPEAD packets. Before embarking on such an approach, be sure you have a good understanding of the
SPEAD protocol, particularly packets, heaps, item pointers and payload.
In the simplest case, each heap needs to be written to some special or pre-allocated storage, but in a contiguous fashion.
In this case it is sufficient to provide a custom allocator (see above), which will return a pointer to the target storage.
In more complex cases, the contents of each heap, or even each packet, needs to be scattered to discontiguous storage
areas. In this case, one can additionally override the memory copy function with set_memcpy() and providing a
packet_memcpy_function.

typedef std::function<void(const spead2::memory_allocator::pointer &allocation, const packet_header &packet)>
spead2::recv::packet_memcpy_function

It takes a pointer to the start of the heap’s allocation (as returned by the allocator) and the packet metadata. The default
implementation is equivalent to the following:

void copy(const spead2::memory_allocator::pointer &allocation, const packet_header &
↪→packet)
{

memcpy(allocation.get() + packet.payload_offset, packet.payload, packet.payload_
↪→length);
}

Note that when providing your own memory copy and allocator, you don’t necessarily need the allocator to actually return
a pointer to payload memory. It could, for example, populate a structure that guides the copy, and return a pointer to that;
or it could return a null pointer. There are some caveats though:

1. If the sender doesn’t provide the heap length item, then spead2 may need to make multiple allocations of in-
creasing size as the heap grows, and each time it will copy (with standard memcpy, rather than your cus-
tom one) the old content to the new. Assuming you aren’t expecting such packets, you can reject them using
set_allow_unsized_heaps().

2. spead2::recv::heap_base::get_items() constructs pointers to the items on the assumption of the
default memcpy function, so if your replacement doesn’t copy things to the same place, you obviously won’t be able
to use those pointers. Note that get_descriptors() will also not be usable.

See examples/gdrapi_example.cu in the spead2 source distribution for an example that copies data to a GPU.

3.3.6 Statistics

See Receiver stream statistics for an overview of statistics.

class stream_stats
Statistics about a stream.
Both a vector-like interface (indexing and size) and a map-like interface (with iterators and find) are provided. The
iterators support random traversal, but are not technically random access iterators because dereferencing does not
return a reference.
The public members provide direct access to the core statistics, for backwards compatibility. New code is advised
to use the other interfaces. Indices for core statistics are available in stream_stat_indices.

52 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

Public Types

using key_type = std::string

using mapped_type = std::uint64_t

using value_type = std::pair<const std::string, std::uint64_t>

using size_type = std::size_t

using difference_type = std::ptrdiff_t

using reference = value_type&

using const_reference = const value_type&

using pointer = value_type*

using const_pointer = const value_type*

using iterator = detail::stream_stats_iterator<stream_stats, std::pair<const std::string&, std::uint64_t&>>

using const_iterator = detail::stream_stats_iterator<const stream_stats, const std::pair<const std::string&,
const std::uint64_t&>>

using reverse_iterator = std::reverse_iterator<iterator>

using const_reverse_iterator = std::reverse_iterator<const_iterator>

Public Functions

stream_stats()

Construct with the default set of statistics, and all zero values.
explicit stream_stats(std::shared_ptr<const std::vector<stream_stat_config>> config)

Construct with all zero values.
stream_stats(std::shared_ptr<const std::vector<stream_stat_config>> config, std::vector<std::uint64_t>

values)
Construct with provided values.

stream_stats(const stream_stats &other)

stream_stats &operator=(const stream_stats &other)

stream_stats(stream_stats &&other) = default

3.3. Receiving 53

spead2, Release 4.3.1

inline const std::vector<stream_stat_config> &get_config() const
Get the configuration of the statistics.

inline bool empty() const
Whether the container is empty.

inline std::size_t size() const
Get the number of statistics.

inline std::uint64_t &operator[](std::size_t index)
Access a statistic by index.
If index is out of range, behaviour is undefined.

inline const std::uint64_t &operator[](std::size_t index) const
Access a statistic by index.
If index is out of range, behaviour is undefined.

inline std::uint64_t &at(std::size_t index)
Access a statistic by index.

Throws
std::out_of_range – if index is out of range.

inline const std::uint64_t &at(std::size_t index) const
Access a statistic by index.

Throws
std::out_of_range – if index is out of range.

std::uint64_t &operator[](const std::string &name)
Access a statistic by name.

Throws
std::out_of_range – if name is not the name of a statistic

const std::uint64_t &operator[](const std::string &name) const
Access a statistic by name.

Throws
std::out_of_range – if name is not the name of a statistic

std::uint64_t &at(const std::string &name)
Access a statistic by name.

Throws
std::out_of_range – if name is not the name of a statistic

const std::uint64_t &at(const std::string &name) const
Access a statistic by name.

Throws
std::out_of_range – if name is not the name of a statistic

inline const_iterator cbegin() const noexcept

inline const_iterator cend() const noexcept

inline iterator begin() noexcept

54 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

inline iterator end() noexcept

inline const_iterator begin() const noexcept

inline const_iterator end() const noexcept

inline const_reverse_iterator crbegin() const noexcept

inline const_reverse_iterator crend() const noexcept

inline reverse_iterator rbegin() noexcept

inline reverse_iterator rend() noexcept

inline const_reverse_iterator rbegin() const noexcept

inline const_reverse_iterator rend() const noexcept

iterator find(const std::string &name)
Find element with the given name.
If not found, returns end().

const_iterator find(const std::string &name) const
Find element with the given name.
If not found, returns end().

std::size_t count(const std::string &name) const
Return the number of elements matching name (0 or 1).

stream_stats operator+(const stream_stats &other) const
Combine two sets of statistics.
Each statistic is combined according to its mode.

See also:
stream_stat_config::mode

Throws
std::invalid_argument – if other has a different list of statistics

stream_stats &operator+=(const stream_stats &other)
Combine another set of statistics with this one.
Each statistic is combined according to its mode.

See also:
stream_stat_config::mode

Throws
std::invalid_argument – if other has a different list of statistics

3.3. Receiving 55

spead2, Release 4.3.1

Public Members

std::uint64_t &heaps

std::uint64_t &incomplete_heaps_evicted

std::uint64_t &incomplete_heaps_flushed

std::uint64_t &packets

std::uint64_t &batches

std::uint64_t &worker_blocked

std::uint64_t &max_batch

std::uint64_t &single_packet_heaps

std::uint64_t &search_dist

class stream_stat_config
Registration information about a statistic counter.

Public Types

enum class mode
Type for a statistic.
All statistics are integral, but the mode determines how values are merged.
Values:

enumerator COUNTER
Merge values by addition.

enumerator MAXIMUM
Merge values by taking the larger one.

56 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

Public Functions

inline const std::string &get_name() const
Get the name passed to the constructor.

inline mode get_mode() const
Get the mode passed to the constructor.

std::uint64_t combine(std::uint64_t a, std::uint64_t b) const
Combine two samples according to the mode.

namespace stream_stat_indices
Constants for indexing stream_stats by index.

Variables

static constexpr std::size_t heaps = 0

static constexpr std::size_t incomplete_heaps_evicted = 1

static constexpr std::size_t incomplete_heaps_flushed = 2

static constexpr std::size_t packets = 3

static constexpr std::size_t batches = 4

static constexpr std::size_t max_batch = 5

static constexpr std::size_t single_packet_heaps = 6

static constexpr std::size_t search_dist = 7

static constexpr std::size_t worker_blocked = 8

static constexpr std::size_t custom = 9
Index for first user-defined statistic.

3.4 Sending

3.4.1 Heaps

class heap
Heap that is constructed for transmission.
Subclassed by spead2::send::heap_wrapper

3.4. Sending 57

spead2, Release 4.3.1

Public Types

typedef std::vector<item>::size_type item_handle
Opaque handle type for retrieving previously added items.

Public Functions

explicit heap(const flavour &flavour_ = flavour())
Constructor.

Parameters
flavour_ – SPEAD flavour that will be used to encode the heap

inline const flavour &get_flavour() const
Return flavour.

template<typename ...Args>
inline item_handle add_item(s_item_pointer_t id, Args&&... args)

Construct a new item.
Returns

A handle that can be passed to get_item to update the item
inline item &get_item(item_handle handle)

Get a reference to a previously added item.
The retrieved item reference may be modified to update the heap in place. Behaviour is undefined if handle
is not a handle previously returned by add_item.

Parameters
handle – Item handle previously returned from add_item

inline const item &get_item(item_handle handle) const
Get a reference to a previously added item.
Behaviour is undefined if handle is not a handle previously returned by add_item.

Parameters
handle – Item handle previously returned from add_item

inline void add_pointer(std::unique_ptr<std::uint8_t[]> &&pointer)
Take over ownership of pointer and arrange for it to be freed when the heap is freed.

void add_descriptor(const descriptor &descriptor)
Encode a descriptor to an item and add it to the heap.

inline void add_start()
Add a start-of-stream control item.

inline void add_end()
Add an end-of-stream control item.

inline void set_repeat_pointers(bool repeat)
Enable/disable repetition of item pointers in all packets.
Usually this is not needed, but it can enable some specialised use cases where immediates can be recovered
from incomplete heaps or where the receiver examines the item pointers in each packet to decide how to

58 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

handle it. The packet size must be large enough to fit all the item pointers for the heap (the implementation
also reserves a little space, so do not rely on a tight fit working).
The default is disabled.

inline bool get_repeat_pointers() const
Return the flag set by set_repeat_pointers.

struct heap_reference
Associate a heap with metadata needed to transmit it.
It holds a reference to the original heap.

Public Functions

inline heap_reference(const send::heap &heap, s_item_pointer_t cnt = -1, std::size_t substream_index = 0,
double rate = -1.0)

Public Members

const send::heap &heap

s_item_pointer_t cnt

std::size_t substream_index

double rate

struct item
An item to be inserted into a heap.
An item does not own its memory.

Public Functions

item() = default
Default constructor.
This item has undefined values and is not usable.

inline item(s_item_pointer_t id, const void *ptr, std::size_t length, bool allow_immediate)
Create an item referencing existing memory.

inline item(s_item_pointer_t id, s_item_pointer_t immediate)
Create an item with a value to be encoded as an immediate.

inline item(s_item_pointer_t id, const std::string &value, bool allow_immediate)
Construct an item referencing the data in a string.

inline item(s_item_pointer_t id, const std::vector<std::uint8_t> &value, bool allow_immediate)
Construct an item referencing the data in a vector.

3.4. Sending 59

spead2, Release 4.3.1

Public Members

s_item_pointer_t id
Item ID.

bool is_inline
If true, the item’s value is stored in-place and must be encoded as an immediate.
Non-inline values can still be encoded as immediates if they have the right length.

bool allow_immediate
If true, the item’s value may be encoded as an immediate.
This must be false if the item is variable-sized, because in that case the actual size can only be determined
from address differences.
If is_inline is true, then this must be true as well.

const std::uint8_t *ptr
Pointer to the value.

std::size_t length
Length of the value.

s_item_pointer_t immediate
Integer value to store (host endian).
This is used if and only if is_inline is true.

3.4.2 Configuration

See spead2.send.StreamConfig for an explanation of the configuration options. In the C++ API, one must first
construct a default configuration and then use setters to set individual properties. The setters all return the configuration
itself so that one can construct a configuration with a single expression such as

spead2::send::stream_config().set_max_packet_size(9172).set_rate(1e9)

class stream_config
Configuration for send streams.

Public Functions

stream_config &set_max_packet_size(std::size_t max_packet_size)
Set maximum packet size to use (only counts the UDP payload, not L1-4 headers).

inline std::size_t get_max_packet_size() const
Get maximum packet size to use.

stream_config &set_rate(double rate)
Set maximum transmit rate to use, in bytes per second.

60 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

inline double get_rate() const
Get maximum transmit rate to use, in bytes per second.

stream_config &set_burst_size(std::size_t burst_size)
Set maximum size of a burst, in bytes.

inline std::size_t get_burst_size() const
Get maximum size of a burst, in bytes.

stream_config &set_max_heaps(std::size_t max_heaps)
Set maximum number of in-flight heaps.

inline std::size_t get_max_heaps() const
Get maximum number of in-flight heaps.

stream_config &set_burst_rate_ratio(double burst_rate_ratio)
Set maximum increase in transmit rate for catching up.

inline double get_burst_rate_ratio() const
Get maximum increase in transmit rate for catching up.

stream_config &set_rate_method(rate_method method)
Set rate-limiting method.

inline rate_method get_rate_method() const
Get rate-limiting method.

double get_burst_rate() const
Get product of rate and burst_rate_ratio.

3.4.3 Streams

All stream types are derived from spead2::send::stream.

enum class spead2::send::group_mode
Determines how to order packets when using spead2::send::stream::async_send_heaps.
Values:

enumerator ROUND_ROBIN
Interleave the packets of the heaps.
One packet is sent from each heap in turn (skipping those that have run out of packets).

enumerator SERIAL
Send the heaps serially, as if they were added one at a time.

typedef std::function<void(const boost::system::error_code &ec, item_pointer_t bytes_transferred)>
spead2::send::stream::completion_handler

Callback type for asynchronous notification of heap completion.

class stream
Stream for sending heaps, potentially to multiple destinations.
Subclassed by spead2::send::inproc_stream, spead2::send::streambuf_stream, spead2::send::tcp_stream,
spead2::send::udp_ibv_stream, spead2::send::udp_stream

3.4. Sending 61

spead2, Release 4.3.1

Public Functions

boost::asio::io_service &get_io_service() const
Retrieve the io_service used for processing the stream.

void set_cnt_sequence(item_pointer_t next, item_pointer_t step)
Modify the linear sequence used to generate heap cnts.
The next heap will have cnt next, and each following cnt will be incremented by step. When using this, it is
the user’s responsibility to ensure that the generated values remain unique. The initial state is next = 1, cnt =
1.
This is useful when multiple senders will send heaps to the same receiver, and need to keep their heap cnts
separate.

bool async_send_heap(const heap &h, completion_handler handler, s_item_pointer_t cnt = -1, std::size_t
substream_index = 0, double rate = -1.0)

Send h asynchronously, with handler called on completion.
The caller must ensure that h remains valid (as well as any memory it points to) until handler is called.
If this function returns true, then the heap has been added to the queue. The completion handlers for such
heaps are guaranteed to be called in order.
If this function returns false, the heap was rejected without being added to the queue. The handler is called
as soon as possible (from a thread running the io_service). If the heap was rejected due to lack of space, the
error code is boost::asio::error::would_block.
By default the heap cnt is chosen automatically (see set_cnt_sequence). An explicit value can instead be chosen
by passing a non-negative value for cnt. When doing this, it is entirely the responsibility of the user to avoid
collisions, both with other explicit values and with the automatic counter. This feature is useful when multiple
senders contribute to a single stream and must keep their heap cnts disjoint, which the automatic assignment
would not do.
The transmission rate may be overridden using the optional rate parameter. If it is negative, the stream’s rate
applies, if it is zero there is no rate limiting, and if it is positive it specifies the rate in bytes per second.
Some streams may contain multiple substreams, each with a different destination. In this case, sub-
stream_index selects the substream to use.

Return values
• false – If the heap was immediately discarded
• true – If the heap was enqueued

template<typename CompletionToken>
inline auto async_send_heap(const heap &h, CompletionToken &&token, s_item_pointer_t cnt = -1,

std::enable_if_t<!std::is_convertible_v<CompletionToken,
completion_handler>, std::size_t> substream_index = 0, double rate = -1.0)

Send h asynchronously, with an arbitrary completion token.
This overload is not used if the completion token is convertible to completion_handler.
Refer to the other overload for details. The boolean return of the other overload is absent. You will need to
retrieve the asynchronous result and check for boost::asio::error::would_block to determine
if the heaps were rejected due to lack of buffer space.

template<typename Iterator>

62 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

inline bool async_send_heaps(Iterator first, Iterator last, completion_handler handler, group_mode mode)
Send a group of heaps asynchronously, with handler called on completion.
The caller must ensure that the heap objects (as well as any memory they point to) remain valid until handler
is called.
If this function returns true, then the heaps have been added to the queue. The completion handlers for such
heaps are guaranteed to be called in order. Note that there is no individual per-heap feedback; the callback
is called once to give the result of the entire group.
If this function returns false, the heaps were rejected without being added to the queue. The handler is
called as soon as possible (from a thread running the io_service). If the heaps were rejected due to lack of
space, the error code is boost::asio::error::would_block. It is an error to send an empty list
of heaps.
Note that either all the heaps will be queued, or none will; in particular, there needs to be enough space in the
queue for them all.
The heaps are specified by a range of input iterators. Typically they will be of type heap_reference, but other
types can be used by overloading get_heap, get_heap_cnt and get_heap_substream_index
for the value type of the iterator. Refer to async_send_heap for an explanation of the cnt and substream_index
parameters.
The heap_reference objects can be safely deleted once this function returns; it is sufficient for the heap objects
(and the data they reference) to persist.

Return values
• false – If the heaps were immediately discarded
• true – If the heaps were enqueued

template<typename Iterator, typename CompletionToken>
inline auto async_send_heaps(Iterator first, Iterator last, CompletionToken &&token,

std::enable_if_t<!std::is_convertible_v<CompletionToken,
completion_handler>, group_mode> mode)

Send a group of heaps asynchronously, with an arbitrary completion token (e.g.,
boost::asio::use_future).
This overload is not used if the completion token is convertible to completion_handler.
Refer to the other overload for details. There are a few differences:

• The boolean return of the other overload is absent. You will need to retrieve the asynchronous result and
check for boost::asio::error::would_block to determine if the heaps were rejected due to
lack of buffer space.

• Depending on the completion token, the iterators might not be used immediately.
Using boost::asio::use_future causes them to be used immediately, but
boost::asio::deferred or boost::asio::use_awaitable does not (they are
only used when awaiting the result). If they are not used immediately, the caller must keep them valid
(as well as the data they reference) until they are used.

std::size_t get_num_substreams() const
Get the number of substreams in this stream.

void flush()
Block until all enqueued heaps have been sent.

3.4. Sending 63

spead2, Release 4.3.1

This function is thread-safe; only the heaps that were enqueued prior to calling the function are waited for.
The handlers will have been called prior to this function returning.

class udp_stream : public spead2::send::stream

Public Functions

udp_stream(io_service_ref io_service, const std::vector<boost::asio::ip::udp::endpoint> &endpoints, const
stream_config &config = stream_config(), std::size_t buffer_size = default_buffer_size, const
boost::asio::ip::address &interface_address = boost::asio::ip::address())

Constructor.
This constructor can handle unicast or multicast destinations, but is primarily intended for unicast as it does
not provide all the options that the multicast-specific constructors do.

Parameters
• io_service – I/O service for sending data
• endpoints – Destination address and port for each substream
• config – Stream configuration
• buffer_size – Socket buffer size (0 for OS default)
• interface_address – Source address
(see tips on Routing)

udp_stream(io_service_ref io_service, boost::asio::ip::udp::socket &&socket, const
std::vector<boost::asio::ip::udp::endpoint> &endpoints, const stream_config &config =
stream_config())

Constructor using an existing socket and an explicit io_service or thread pool.
The socket must be open but not connected, and the io_service must match the socket’s.

udp_stream(io_service_ref io_service, const std::vector<boost::asio::ip::udp::endpoint> &endpoints, const
stream_config &config, std::size_t buffer_size, int ttl)

Constructor with multicast hop count.
Parameters

• io_service – I/O service for sending data
• endpoints – Multicast group and port for each substream
• config – Stream configuration
• buffer_size – Socket buffer size (0 for OS default)
• ttl – Maximum number of hops

Throws
• std::invalid_argument – if any element of endpoints is not a multicast address
• std::invalid_argument – if the elements of endpoints do not all have the same pro-
tocol

• std::invalid_argument – if endpoints is empty

64 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

udp_stream(io_service_ref io_service, const std::vector<boost::asio::ip::udp::endpoint> &endpoints, const
stream_config &config, std::size_t buffer_size, int ttl, const boost::asio::ip::address
&interface_address)

Constructor with multicast hop count and outgoing interface address (IPv4 only).
Parameters

• io_service – I/O service for sending data
• endpoints – Multicast group and port for each substream
• config – Stream configuration
• buffer_size – Socket buffer size (0 for OS default)
• ttl – Maximum number of hops
• interface_address – Address of the outgoing interface

Throws
• std::invalid_argument – if any element of endpoint is not an IPv4multicast address
• std::invalid_argument – if endpoints is empty
• std::invalid_argument – if interface_address is not an IPv4 address

udp_stream(io_service_ref io_service, const std::vector<boost::asio::ip::udp::endpoint> &endpoints, const
stream_config &config, std::size_t buffer_size, int ttl, unsigned int interface_index)

Constructor with multicast hop count and outgoing interface index (IPv6 only).

See also:
if_nametoindex(3)

Parameters
• io_service – I/O service for sending data
• endpoints – Multicast group and port for each substream
• config – Stream configuration
• buffer_size – Socket buffer size (0 for OS default)
• ttl – Maximum number of hops
• interface_index – Index of the outgoing interface

Throws
• std::invalid_argument – if any element of endpoints is not an IPv6 multicast ad-
dress

• std::invalid_argument – if endpoints is empty

3.4. Sending 65

spead2, Release 4.3.1

Private Functions

udp_stream(io_service_ref io_service, boost::asio::ip::udp::socket &&socket, const
std::vector<boost::asio::ip::udp::endpoint> &endpoints, const stream_config &config, std::size_t
buffer_size)

Constructor used to implement most other constructors.

class tcp_stream : public spead2::send::stream

Public Functions

tcp_stream(io_service_ref io_service, std::function<void(const boost::system::error_code&)>
&&connect_handler, const std::vector<boost::asio::ip::tcp::endpoint> &endpoints, const
stream_config &config = stream_config(), std::size_t buffer_size = default_buffer_size, const
boost::asio::ip::address &interface_address = boost::asio::ip::address())

Constructor.
A callback is provided to indicate when the connection is established.

Warning: The callbackmay be called before the constructor returns. The implementation of the callback
needs to be prepared to handle this case.

Parameters
• io_service – I/O service for sending data
• connect_handler – Callback when connection is established. It is called with a
boost::system::error_code to indicate whether connection was successful.

• endpoints – Destination host and port (must contain exactly one element)
• config – Stream configuration
• buffer_size – Socket buffer size (0 for OS default)
• interface_address – Source address
(see tips on Routing)

tcp_stream(io_service_ref io_service, boost::asio::ip::tcp::socket &&socket, const stream_config &config =
stream_config())

Constructor using an existing socket.
The socket must be connected.

class streambuf_stream : public spead2::send::stream
Puts packets into a streambuf (which could come from an ostream).
This should not be used for a blocking stream such as a wrapper around TCP, because doing so will block the asio
handler thread.
Subclassed by spead2::send::stream_wrapper< streambuf_stream >

66 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

Public Functions

streambuf_stream(io_service_ref io_service, std::streambuf &streambuf, const stream_config &config =
stream_config())

Constructor.

3.5 In-process transport

See the Python documentation for an overview of the in-process transport.

class inproc_queue
Queue for packets being passed within the process.
While the data members are public, this is only to allow the send and receive code (and unit tests) to access the
data. Users are advised to treat the data members as opaque.

Public Functions

void add_packet(packet &&pkt)
Add a packet directly to the queue.

void stop()
Indicate end-of-stream to receivers.
It is an error to add any more packets after this.

3.5.1 Sending

class inproc_stream : public spead2::send::stream

Public Functions

inproc_stream(io_service_ref io_service, const std::vector<std::shared_ptr<inproc_queue>> &queues,
const stream_config &config = stream_config())

Constructor.

Private Functions

detail::queue_item *get_queue(std::size_t idx)
Access a (valid) item from the queue (takes care of masking the index)

3.5. In-process transport 67

spead2, Release 4.3.1

3.5.2 Receiving

class inproc_reader : public spead2::recv::reader
Stream reader that receives packets from an inproc_queue.

Public Functions

inproc_reader(stream &owner, std::shared_ptr<inproc_queue> queue)
Constructor.

3.6 Logging

By default, log messages are all written to standard error. However, the logging function can be replaced by calling
spead2::set_log_function().
std::function<void(log_level, const std::string&)> spead2::set_log_function(std::function<void(log_level,

const std::string&)>)
Set the callback used to display log messages, and return the old value.

3.7 Support for ibverbs

The support for libibverbs is essentially the same as for Python, with the same limitations. The programmatic interface is
via the spead2::recv::udp_ibv_reader and spead2::send::udp_ibv_stream classes:

class udp_ibv_config : public spead2::detail::udp_ibv_config_base<udp_ibv_config>
Configuration for udp_ibv_reader.
Subclassed by spead2::recv::udp_ibv_config_wrapper

Public Functions

inline std::size_t get_max_size() const
Get maximum packet size to accept.

udp_ibv_config &set_max_size(std::size_t max_size)
Set maximum packet size to accept.

inline const std::vector<boost::asio::ip::udp::endpoint> &get_endpoints() const
Get the configured endpoints.

udp_ibv_config &set_endpoints(const std::vector<boost::asio::ip::udp::endpoint> &endpoints)
Set the endpoints (replacing any previous).

Throws
std::invalid_argument – if any element of endpoints is invalid.

68 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

udp_ibv_config &add_endpoint(const boost::asio::ip::udp::endpoint &endpoint)
Append a single endpoint.

Throws
std::invalid_argument – if endpoint is invalid.

inline const boost::asio::ip::address get_interface_address() const
Get the currently set interface address.

udp_ibv_config &set_interface_address(const boost::asio::ip::address &interface_address)
Set the interface address.

Throws
std::invalid_argument – if interface_address is not an IPv4 address.

inline std::size_t get_buffer_size() const
Get the currently configured buffer size.

udp_ibv_config &set_buffer_size(std::size_t buffer_size)
Set the buffer size.
The value 0 is special and resets it to the default. The actual buffer size used may be slightly different to round
it to a whole number of packet-sized slots.

inline int get_comp_vector() const
Get the completion channel vector (see set_comp_vector)

udp_ibv_config &set_comp_vector(int comp_vector)
Set the completion channel vector (interrupt) for asynchronous operation.
Use a negative value to poll continuously. Polling should not be used if there are other users of the thread
pool. If a non-negative value is provided, it is taken modulo the number of available completion vectors.
This allows a number of streams to be assigned sequential completion vectors and have them load-balanced,
without concern for the number available.

inline int get_max_poll() const
Get maximum number of times to poll in a row (see set_max_poll)

udp_ibv_config &set_max_poll(int max_poll)
Set maximum number of times to poll in a row.
If interrupts are enabled (default), it is the maximum number of times to poll before waiting for an interrupt;
if they are disabled by set_comp_vector, it is the number of times to poll before letting other code run on the
thread.

Throws
std::invalid_argument – if max_poll is zero.

Public Static Attributes

static constexpr std::size_t default_buffer_size = 16 * 1024 * 1024
Receive buffer size, if none is explicitly set.

static constexpr std::size_t default_max_size = udp_reader_base::default_max_size
Maximum packet size to accept, if none is explicitly set.

3.7. Support for ibverbs 69

spead2, Release 4.3.1

static constexpr int default_max_poll = 10
Number of times to poll in a row, if none is explicitly set.

class udp_ibv_reader : public spead2::recv::detail::udp_ibv_reader_base<udp_ibv_reader>
Synchronous or asynchronous stream reader that reads UDP packets using the Infiniband verbs API.
It currently only supports IPv4, with no fragmentation, IP header options, or VLAN tags.

Public Functions

udp_ibv_reader(stream &owner, const udp_ibv_config &config)
Constructor.

Parameters
• owner – Owning stream
• config – Configuration

Throws
• std::invalid_argument – If no endpoints are set.
• std::invalid_argument – If no interface address is set.

class udp_ibv_config : public spead2::detail::udp_ibv_config_base<udp_ibv_config>
Configuration for udp_ibv_stream.
Subclassed by spead2::send::udp_ibv_config_wrapper

Public Functions

inline std::uint8_t get_ttl() const
Get the IP TTL.

udp_ibv_config &set_ttl(std::uint8_t ttl)
Set the IP TTL.

inline const std::vector<memory_region> &get_memory_regions() const
Get currently registered memory regions.

udp_ibv_config &set_memory_regions(const std::vector<memory_region> &memory_regions)
Register a set of memory regions (replacing any previous).
Items stored inside such pre-registered memory regions can (in most cases) be transmitted without making a
copy. A memory region is defined by a start pointer and a size in bytes.
Memory regions must not overlap; this is only validating when constructing the stream.

udp_ibv_config &add_memory_region(const void *ptr, std::size_t size)
Append a memory region (see set_memory_regions)

inline const std::vector<boost::asio::ip::udp::endpoint> &get_endpoints() const
Get the configured endpoints.

70 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

udp_ibv_config &set_endpoints(const std::vector<boost::asio::ip::udp::endpoint> &endpoints)
Set the endpoints (replacing any previous).

Throws
std::invalid_argument – if any element of endpoints is invalid.

udp_ibv_config &add_endpoint(const boost::asio::ip::udp::endpoint &endpoint)
Append a single endpoint.

Throws
std::invalid_argument – if endpoint is invalid.

inline const boost::asio::ip::address get_interface_address() const
Get the currently set interface address.

udp_ibv_config &set_interface_address(const boost::asio::ip::address &interface_address)
Set the interface address.

Throws
std::invalid_argument – if interface_address is not an IPv4 address.

inline std::size_t get_buffer_size() const
Get the currently configured buffer size.

udp_ibv_config &set_buffer_size(std::size_t buffer_size)
Set the buffer size.
The value 0 is special and resets it to the default. The actual buffer size used may be slightly different to round
it to a whole number of packet-sized slots.

inline int get_comp_vector() const
Get the completion channel vector (see set_comp_vector)

udp_ibv_config &set_comp_vector(int comp_vector)
Set the completion channel vector (interrupt) for asynchronous operation.
Use a negative value to poll continuously. Polling should not be used if there are other users of the thread
pool. If a non-negative value is provided, it is taken modulo the number of available completion vectors.
This allows a number of streams to be assigned sequential completion vectors and have them load-balanced,
without concern for the number available.

inline int get_max_poll() const
Get maximum number of times to poll in a row (see set_max_poll)

udp_ibv_config &set_max_poll(int max_poll)
Set maximum number of times to poll in a row.
If interrupts are enabled (default), it is the maximum number of times to poll before waiting for an interrupt;
if they are disabled by set_comp_vector, it is the number of times to poll before letting other code run on the
thread.

Throws
std::invalid_argument – if max_poll is zero.

3.7. Support for ibverbs 71

spead2, Release 4.3.1

Public Static Attributes

static constexpr std::size_t default_buffer_size = 512 * 1024
Default send buffer size.

static constexpr int default_max_poll = 10
Default number of times to poll in a row.

class udp_ibv_stream : public spead2::send::stream

Public Functions

udp_ibv_stream(io_service_ref io_service, const stream_config &config, const udp_ibv_config
&ibv_config)

Constructor.
Parameters

• io_service – I/O service for sending data
• config – Common stream configuration
• ibv_config – Class-specific stream configuration

Throws
• std::invalid_argument – if ibv_config does not have an interface address set.
• std::invalid_argument – if ibv_config does not have any endpoints set.
• std::invalid_argument – if memory regions overlap.

3.7.1 PeerDirect

The pointer given to spead2::send::udp_ibv_config::add_memory_region() is passed to
ibv_reg_mr(). When using an NVIDIA NIC, this can be a pointer that is handled by PeerDirect, such as a
GPU device pointer. This can be used to transfer data directly from a GPU to the network without passing though the
CPU.
This approach does need some care, because the spead2 implementation will fall back to copying if a packet contains too
many discontiguous pieces of memory. It will be safe as long as there is only one item in a heap that uses a registered
memory region, or as long as all such items are at least as big as the packet size.
For an example of this, see examples/gpudirect_example.cu in the spead2 source distribution.

72 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

3.8 Chunking receiver

For an overview, refer to Chunking receiver. This page is a reference for the C++ API.

struct chunk_place_data
Data passed to chunk_place_function.
This structure is designed to be a plain C structure that can easily be handled by language bindings. As far as
possible, new fields will be added to the end but existing fields will be retained, to preserve ABI compatibility.
Do not modify any of the pointers in the structure.

Public Members

const std::uint8_t *packet
Pointer to the original packet data.

std::size_t packet_size
Number of bytes referenced by packet.

s_item_pointer_t *items
Values of requested item pointers.

std::int64_t chunk_id
Chunk ID (output). Set to -1 (or leave unmodified) to discard the heap.

std::size_t heap_index
Number of this heap within the chunk (output)

std::size_t heap_offset
Byte offset of this heap within the chunk payload (output)

std::uint64_t *batch_stats
Pointer to staging area for statistics.

std::uint8_t *extra
Pointer to data to be copied to chunk::extra.

std::size_t extra_offset
Offset within chunk::extra to write.

std::size_t extra_size
Number of bytes to copy to chunk::extra.

typedef std::function<void(chunk_place_data *data, std::size_t data_size)>
spead2::recv::chunk_place_function

3.8. Chunking receiver 73

spead2, Release 4.3.1

Callback to determine where a heap is placed in the chunk stream.

See also:
chunk_place_data

Param data
Pointer to the input and output arguments.

Param data_size
sizeof(chunk_place_data) at the time spead2 was compiled

typedef std::function<std::unique_ptr<chunk>(std::int64_t chunk_id, std::uint64_t *batch_stats)>
chunk_allocate_function

Callback to obtain storage for a new chunk.

typedef std::function<void(std::unique_ptr<chunk>&&, std::uint64_t *batch_stats)>
spead2::recv::chunk_ready_function

Callback to receive a completed chunk.
It takes ownership of the chunk.

class chunk
Storage for a chunk with metadata.
Subclassed by spead2::recv::chunk_wrapper

Public Members

std::int64_t chunk_id = -1
Chunk ID.

std::uintptr_t stream_id = 0
Stream ID of the stream from which the chunk originated.

memory_allocator::pointer present
Flag array indicating which heaps have been received (one byte per heap)

std::size_t present_size = 0
Number of elements in present.

memory_allocator::pointer data
Chunk payload.

memory_allocator::pointer extra
Optional storage area for per-heap metadata.

74 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

class chunk_stream_config
Parameters for a chunk_stream.

Public Functions

chunk_stream_config &set_items(const std::vector<item_pointer_t> &item_ids)
Specify the items whose immediate values should be passed to the place function (see chunk_place_function).

inline const std::vector<item_pointer_t> &get_items() const
Get the items set with set_items.

chunk_stream_config &set_max_chunks(std::size_t max_chunks)
Set the maximum number of chunks that can be live at the same time.
A value of 1 means that heaps must be received in order: once a chunk is started, no heaps from a previous
chunk will be accepted.

Throws
std::invalid_argument – if max_chunks is 0.

inline std::size_t get_max_chunks() const
Return the maximum number of chunks that can be live at the same time.

chunk_stream_config &set_place(chunk_place_function place)
Set the function used to determine the chunk of each heap and its placement within the chunk.

inline const chunk_place_function &get_place() const
Get the function used to determine the chunk of each heap and its placement within the chunk.

chunk_stream_config &set_allocate(chunk_allocate_function allocate)
Set the function used to allocate a chunk.

inline const chunk_allocate_function &get_allocate() const
Get the function used to allocate a chunk.

chunk_stream_config &set_ready(chunk_ready_function ready)
Set the function that is provided with completed chunks.

inline const chunk_ready_function &get_ready() const
Get the function that is provided with completed chunks.

chunk_stream_config &enable_packet_presence(std::size_t payload_size)
Enable the packet presence feature.
The payload offset of each packet is divided by payload_size and added to the heap index before indexing
spead2::recv::chunk::present.

Throws
std::invalid_argument – if payload_size is zero.

chunk_stream_config &disable_packet_presence()
Disable the packet presence feature enabled by enable_packet_presence.

inline std::size_t get_packet_presence_payload_size() const
Retrieve the payload_size if packet presence is enabled, or 0 if not.

3.8. Chunking receiver 75

spead2, Release 4.3.1

chunk_stream_config &set_max_heap_extra(std::size_t max_heap_extra)
Set maximum amount of data a placement function may write to chunk_place_data::extra.

inline std::size_t get_max_heap_extra() const
Get maximum amount of data a placement function may write to chunk_place_data::extra.

Public Static Attributes

static constexpr std::size_t default_max_chunks = 2
Default value for set_max_chunks.

class chunk_stream : private spead2::recv::detail::chunk_stream_state<detail::chunk_manager_simple>, public
spead2::recv::stream

Stream that writes incoming heaps into chunks.
Subclassed by spead2::recv::chunk_ring_stream< DataRingbuffer, FreeRingbuffer >

Public Functions

chunk_stream(io_service_ref io_service, const stream_config &config, const chunk_stream_config
&chunk_config)

Constructor.
This class passes a modified config to the base class constructor. This is reflected in the return of get_config.
In particular:

• The allow unsized heaps setting is forced to false.
• The memcpy function may be overridden, although the provided function is still used when a copy hap-
pens. Use get_heap_metadata to get a pointer to heap_metadata, from which the chunk can be retrieved.

• The memory allocator is overridden, and the provided value is ignored.
• Additional statistics are registered:

– too_old_heaps: number of heaps for which the placement function returned a non-negative
chunk ID that was behind the window.

– rejected_heaps: number of heaps for which the placement function returned a negative chunk
ID.

Parameters
• io_service – I/O service (also used by the readers).
• config – Basic stream configuration
• chunk_config – Configuration for chunking

Throws
invalid_argument – if any of the function pointers in chunk_config have not been set.

76 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

Private Functions

inline const chunk_stream_config &get_chunk_config() const
Get the stream’s chunk configuration.

Private Static Functions

static const heap_metadata *get_heap_metadata(const memory_allocator::pointer &ptr)
Get the metadata associated with a heap payload pointer.
If the pointer was not allocated by a chunk stream, returns nullptr.

3.8.1 Ringbuffer convenience API

template<typename DataRingbuffer = ringbuffer<std::unique_ptr<chunk>>, typename FreeRingbuffer =
ringbuffer<std::unique_ptr<chunk>>>
class chunk_ring_stream : public detail::chunk_ring_pair<ringbuffer<std::unique_ptr<chunk>>,
ringbuffer<std::unique_ptr<chunk>>>, public spead2::recv::chunk_stream

Wrapper around chunk_stream that uses ringbuffers to manage chunks.
When a fresh chunk is needed, it is retrieved from a ringbuffer of free chunks (the “free ring”). When a chunk is
flushed, it is pushed to a “data ring”. These may be shared between streams, but both will be stopped as soon as
any of the streams using them are stopped. The intended use case is parallel streams that are started and stopped
together.
When stop is called, any in-flight chunks (that are not in either of the ringbuffers) will be freed from the thread that
called stop.

Public Functions

chunk_ring_stream(io_service_ref io_service, const stream_config &config, const chunk_stream_config
&chunk_config, std::shared_ptr<DataRingbuffer> data_ring,
std::shared_ptr<FreeRingbuffer> free_ring)

Constructor.
Refer to chunk_stream::chunk_stream for details.
The allocate callback is ignored and should be unset. If a ready callback is defined, it will be called before
the chunk is pushed onto the ringbuffer. It must not move from the provided unique_ptr, but it can be used
to perform further processing on the chunk before it is pushed.
Calling get_chunk_config will reflect the internally-defined callbacks.

template<typename T, typename DataSemaphore = semaphore, typename SpaceSemaphore = semaphore>

class ringbuffer : public spead2::ringbuffer_base<T>
Ring buffer with blocking and non-blocking push and pop.
It supports non-copyable objects using move semantics. The producer may signal that it has finished producing data
by calling stop, which will gracefully shut down consumers as well as other producers. This class is fully thread-safe
for multiple producers and consumers.
With multiple producers it is sometimes desirable to only stop the ringbuffer once all the producers are finished.
To support this, a producer may register itself with add_producer, and indicate completion with remove_producer.
If this causes the number of producers to fall to zero, the stream is stopped.

3.8. Chunking receiver 77

spead2, Release 4.3.1

Public Functions

void try_push(T &&value)
Append an item to the queue, if there is space.
It uses move semantics, so on success, the original value is undefined.

Parameters
value – Value to move

Throws
• ringbuffer_full – if there is no space
• ringbuffer_stopped – if stop has already been called

template<typename ...Args>
void try_emplace(Args&&... args)

Construct a new item in the queue, if there is space.
Parameters

args – Arguments to the constructor
Throws

• ringbuffer_full – if there is no space
• ringbuffer_stopped – if stop has already been called

template<typename ...SemArgs>
void push(T &&value, SemArgs&&... sem_args)

Append an item to the queue, blocking if necessary.
It uses move semantics, so on success, the original value is undefined.

Parameters
• value – Value to move
• sem_args – Arbitrary arguments to pass to the space semaphore

Throws
ringbuffer_stopped – if stop is called first

template<typename ...Args>
void emplace(Args&&... args)

Construct a new item in the queue, blocking if necessary.
Parameters

args – Arguments to the constructor
Throws

ringbuffer_stopped – if stop is called first
T try_pop()

Retrieve an item from the queue, if there is one.
Throws

• ringbuffer_stopped – if the queue is empty and stop was called
• ringbuffer_empty – if the queue is empty but still active

template<typename ...SemArgs>

78 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

T pop(SemArgs&&... sem_args)
Retrieve an item from the queue, blocking until there is one or until the queue is stopped.

Parameters
sem_args – Arbitrary arguments to pass to the data semaphore

Throws
ringbuffer_stopped – if the queue is empty and stop was called

bool stop()
Indicate that no more items will be produced.
This does not immediately stop consumers if there are still items in the queue; instead, consumers will continue
to retrieve remaining items, and will only be signalled once the queue has drained.

Returns
whether the ringbuffer was stopped

bool remove_producer()
Indicate that a producer registered with add_producer is finished with the ringbuffer.
If this was the last producer, the ringbuffer is stopped.

Returns
whether the ringbuffer was stopped

inline const DataSemaphore &get_data_sem() const
Get access to the data semaphore.

inline const SpaceSemaphore &get_space_sem() const
Get access to the free-space semaphore.

detail::ringbuffer_iterator<ringbuffer> begin()
Begin iteration over the items in the ringbuffer.
This does not return a full-blown iterator; it is only intended to be used for a range-based for loop. For
example: for (auto &&item : ringbuffer) { ... }

detail::ringbuffer_sentinel end()
End iterator (see begin).

std::size_t capacity() const
Maximum number of items that can be held at once.

std::size_t size() const
Return the number of items currently in the ringbuffer.
This should only be used for metrics, not for control flow, as the result could be out of date by the time it is
returned.

void add_producer()
Register a new producer.
Producers only need to call this if they want to call ringbuffer::remove_producer.

class ringbuffer_empty : public std::runtime_error
Thrown when attempting to do a non-blocking pop from an empty ringbuffer.

3.8. Chunking receiver 79

spead2, Release 4.3.1

class ringbuffer_full : public std::runtime_error
Thrown when attempting to do a non-blocking push to a full ringbuffer.

class ringbuffer_stopped : public std::runtime_error
Thrown when attempting to do a pop from an empty ringbuffer that has been stopped, or a push to a ringbuffer that
has been stopped.

3.9 Chunking stream groups

For an overview, refer to Chunking stream groups. This page is a reference for the C++ API.

class chunk_stream_group_config
Configuration for chunk_stream_group.

Public Types

enum class eviction_mode
Eviction mode when it is necessary to advance the group window.
See the overview for more details.
Values:

enumerator LOSSY
force streams to release incomplete chunks

enumerator LOSSLESS
a chunk will only be marked ready when all streams have marked it ready

Public Functions

chunk_stream_group_config &set_max_chunks(std::size_t max_chunks)
Set the maximum number of chunks that can be live at the same time.
A value of 1 means that heaps must be received in order: once a chunk is started, no heaps from a previous
chunk will be accepted.

Throws
std::invalid_argument – if max_chunks is 0.

inline std::size_t get_max_chunks() const
Return the maximum number of chunks that can be live at the same time.

chunk_stream_group_config &set_eviction_mode(eviction_mode eviction_mode_)
Set chunk eviction mode. See eviction_mode.

inline eviction_mode get_eviction_mode() const
Return the current eviction mode.

80 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

chunk_stream_group_config &set_allocate(chunk_allocate_function allocate)
Set the function used to allocate a chunk.

inline const chunk_allocate_function &get_allocate() const
Get the function used to allocate a chunk.

chunk_stream_group_config &set_ready(chunk_ready_function ready)
Set the function that is provided with completed chunks.

inline const chunk_ready_function &get_ready() const
Get the function that is provided with completed chunks.

Public Static Attributes

static constexpr std::size_t default_max_chunks = chunk_stream_config::default_max_chunks
Default value for set_max_chunks.

class chunk_stream_group
A holder for a collection of streams that share chunks.
The group owns the component streams, and takes care of stopping and destroying them when the group is stopped
or destroyed.
It presents an interface similar to std::vector for observing the set of attached streams.
The public interface must only be called from one thread at a time, and all streams must be added before any readers
are attached to them.
Subclassed by spead2::recv::chunk_stream_ring_group< DataRingbuffer, FreeRingbuffer >

Vector-like access to the streams.

Iterator invalidation rules are the same as forstd::vector i.e., modifying the set of streams invalidates iterators.

inline std::size_t size() const
Number of streams.

inline bool empty() const
Whether there are any streams.

inline chunk_stream_group_member &operator[](std::size_t index)
Get the stream at a given index.

inline const chunk_stream_group_member &operator[](std::size_t index) const
Get the stream at a given index.

iterator begin() noexcept
Get an iterator to the first stream.

iterator end() noexcept
Get an iterator past the last stream.

const_iterator begin() const noexcept
Get an iterator to the first stream.

3.9. Chunking stream groups 81

https://pybind11.readthedocs.io/en/stable/reference.html#_CPPv48iterator
https://pybind11.readthedocs.io/en/stable/reference.html#_CPPv48iterator

spead2, Release 4.3.1

const_iterator end() const noexcept
Get a const iterator past the last stream.

const_iterator cbegin() const noexcept
Get an iterator to the first stream.

const_iterator cend() const noexcept
Get a const iterator past the last stream.

Public Functions

chunk_stream_group_member &emplace_back(io_service_ref io_service, const stream_config &config, const
chunk_stream_config &chunk_config)

Add a new stream.
template<typename T, typename ...Args>
T &emplace_back(Args&&... args)

Add a new stream, possibly of a subclass.
virtual void stop()

Stop all streams and release all chunks.

class chunk_stream_group_member : private
spead2::recv::detail::chunk_stream_state<detail::chunk_manager_group>, public spead2::recv::stream

Single single within a group managed by chunk_stream_group.

Public Functions

virtual void stop_received() override
Shut down the stream.
This calls flush_unlocked. Subclasses may override this to achieve additional effects, but must chain to the
base implementation. It is guaranteed that it will only be called once.
It is undefined what happens if add_packet is called after a stream is stopped.
This is called with spead2::recv::stream_base::shared_state::queue_mutex locked. Users must not call this
function themselves; instead, call stop.

virtual void stop() override
Stop the stream.
After this returns, the io_service may still have outstanding completion handlers, but they should be no-ops
when they’re called.
In most cases subclasses should override stop_received rather than this function. However, if heap_ready can
block indefinitely, this function should be overridden to unblock it before calling the base implementation.

template<typename T, typename ...Args>
inline void emplace_reader(Args&&... args)

Add a new reader by passing its constructor arguments, excluding the initial io_service and owner arguments.

82 Chapter 3. C++ API for spead2

spead2, Release 4.3.1

void start()
Start the stream.
This is only needed if the config specifies explicit start (see stream_config::set_explicit_start). In that case, no
new readers can be added after starting the stream.

inline const stream_config &get_config() const
Get the stream’s configuration.

stream_stats get_stats() const
Return statistics about the stream.
See the Python documentation.

Protected Functions

inline const stream_config &get_config() const
Get the stream’s configuration.

stream_stats get_stats() const
Return statistics about the stream.
See the Python documentation.

void flush()
Flush the collection of live heaps, passing them to heap_ready.

Private Functions

stream_config adjust_config(const stream_config &config)
Compute the config to pass down to spead2::recv::stream.

std::pair<std::uint8_t*, heap_metadata> allocate(std::size_t size, const packet_header &packet)
Allocate storage for a heap within a chunk, given a first packet for a heap.

Returns
A raw pointer for heap storage and context used for actual copies.

void flush_chunks()
Send all in-flight chunks to the ready callback (not thread-safe)

inline const chunk_stream_config &get_chunk_config() const
Get the stream’s chunk configuration.

Private Static Functions

static const heap_metadata *get_heap_metadata(const memory_allocator::pointer &ptr)
Get the metadata associated with a heap payload pointer.
If the pointer was not allocated by a chunk stream, returns nullptr.

3.9. Chunking stream groups 83

spead2, Release 4.3.1

3.9.1 Ringbuffer convenience API

template<typename DataRingbuffer = ringbuffer<std::unique_ptr<chunk>>, typename FreeRingbuffer =
ringbuffer<std::unique_ptr<chunk>>>
class chunk_stream_ring_group : public detail::chunk_ring_pair<ringbuffer<std::unique_ptr<chunk>>,
ringbuffer<std::unique_ptr<chunk>>>, public spead2::recv::chunk_stream_group

Wrapper around chunk_stream_group that uses ringbuffers to manage chunks.
When a fresh chunk is needed, it is retrieved from a ringbuffer of free chunks (the “free ring”). When a chunk is
flushed, it is pushed to a “data ring”. These may be shared between groups, but both will be stopped as soon as any
of the members streams are stopped. The intended use case is parallel groups that are started and stopped together.
When the group is stopped, the ringbuffers are both stopped, and readied chunks are diverted into a graveyard.
The graveyard is then emptied from the thread calling stop. This makes it safe to use chunks that can only safely
be freed from the caller’s thread (e.g. a Python thread holding the GIL).

Vector-like access to the streams.

Iterator invalidation rules are the same as forstd::vector i.e., modifying the set of streams invalidates iterators.

inline std::size_t size() const
Number of streams.

inline bool empty() const
Whether there are any streams.

inline chunk_stream_group_member &operator[](std::size_t index)
Get the stream at a given index.

inline const chunk_stream_group_member &operator[](std::size_t index) const
Get the stream at a given index.

iterator begin() noexcept
Get an iterator to the first stream.

const_iterator begin() const noexcept
Get an iterator to the first stream.

iterator end() noexcept
Get an iterator past the last stream.

const_iterator end() const noexcept
Get a const iterator past the last stream.

const_iterator cbegin() const noexcept
Get an iterator to the first stream.

const_iterator cend() const noexcept
Get a const iterator past the last stream.

84 Chapter 3. C++ API for spead2

https://pybind11.readthedocs.io/en/stable/reference.html#_CPPv48iterator
https://pybind11.readthedocs.io/en/stable/reference.html#_CPPv48iterator

spead2, Release 4.3.1

Public Functions

virtual void stop() override
Stop all streams and release all chunks.

chunk_stream_group_member &emplace_back(io_service_ref io_service, const stream_config &config, const
chunk_stream_config &chunk_config)

Add a new stream.
template<typename T, typename ...Args>
T &emplace_back(Args&&... args)

Add a new stream, possibly of a subclass.

3.9. Chunking stream groups 85

spead2, Release 4.3.1

86 Chapter 3. C++ API for spead2

CHAPTER

FOUR

ADVANCED FEATURES

4.1 Chunking receiver

For some high-bandwidth use cases, dealing with heaps one at a time is not practical. For example, transferring data
to an accelerator (such as a GPU) or another process may have a high overhead that needs to be amortised over many
heaps. This is particularly true when using the Python API, as transferring a heap across the C++/Python boundary has
a non-trivial overhead.
Furthermore, when grouping heaps together, it may be useful to assemble them according to their semantic position,
rather than just in the order they arrived. For example, if the heaps represent samples in time, it is useful to place them
within larger buffers according to their timestamps. The chunking receiver classes support these use cases.
The main limitation of these classes is that only the heap payload is accessible in the output. The heap items are used only
to determine where each heap belongs and are then discarded, and descriptors are not accessible. It is also necessary for
the receiver to know in advance how big the heaps will be. It is thus best suited to application-specific receivers that have
prior knowledge of the heap layout.
Heaps are organised into chunks, which collect the payload from multiple heaps into a contiguous region of memory.
There are assumed to be a continuous sequence of chunks, with consecutive 64-bit IDs. The user provides a callback (the
place callback) which determines for each heap

• the chunk ID;
• the heap index within the chunk;
• the offset within the chunk.

The heap index is used to report which heaps are received, via a boolean array. The indices for a chunk should thus be
consecutive integers starting from 0 (gaps are allowed, but will waste memory in the array). The offset is the byte offset
within the storage for the chunk. The callback may also indicate that the heap should be ignored by returning a chunk ID
of -1 (which is the value on entry, so this is the effect if the callback does not change the chunk ID).
Chunks are assumed to be received approximately in order (increasing ID) without gaps, but with a tolerance specified as
a maximum number of contiguous chunks to have under construction at one time. If a heap is received whose chunk ID
is too low, it is dropped.
When the first packet of the first heap of a chunk is seen, a user-provided callback (the allocation callback) is used to
obtain the storage for the chunk. It is responsible for obtaining the memory for both the payload and the boolean array
indicating the present heaps. It must also zero out the boolean array, and it may choose to fill the payload as well. Note
that when an incomplete heap is received, it will not be marked present in the array, but some of the payload bytes may
still have been written.
Chunks may also be requested from the callback even when no packets have been seen for them. This occurs when the
new chunk ID is not contiguous with the previously seen chunk ID. Chunks are back-filled (up to the window size) so
that they are present should an older heap arrive later. This can also happen for the very first packet of the stream, but

87

spead2, Release 4.3.1

it is limited to chunks with non-negative IDs. Thus, if the first packet corresponds to chunk 0, there will not be any
back-filling. It is worth noting that the chunk IDs used in the callback are strictly monotonic.
If the callback returns a null pointer, all work on this chunk is silently skipped. This is intended only for use in shutdown
code (i.e., during the call to stop) to avoid needing to create chunks that will never be consumed.
Once a chunk is aged out (by the arrival of newer chunks), or when the stream is stopped, it is passed to another callback
(the ready callback) for processing.

4.1.1 Packet presence

Instead of only getting information on which heaps were successfully received, it is possible to instead get information
about which packets were received, even if some packets from a heap are missing. This is only possible if the amount of
payload in each packet is known in advance. The payload offset item is divided by the expected payload size and added
to the heap offset returned by the callback before being used.
When using this feature one may wish to enable the allow_out_of_order flag when configuring the stream, so that
the loss of a packet in the middle of a heap does not prevent the following packets from being processed.

4.1.2 Extra data

In some cases the place callback may wish to extract additional data from each heap (such as immediate items) and make
it available as part of the chunk. To do this:

1. Set the extra member of each chunk to a buffer to hold this data.
2. When configuring the stream, specify the maximum amount of data that may be written here per heap.
3. As part of the place callback, write data through the extra pointer, and set the extra_offset and ex-

tra_size fields to indicate how much data to copy to the chunk and at which byte offset within the extra
field. The extra_size field defaults to zero, so if you do not have any extra data to emit these fields need not
be explicitly set.

At present it is only possible to write a contiguous piece of data per heap.
The data is transferred to the chunk even if the heap is incomplete (and hence not marked in the present array).

4.1.3 Ringbuffer convenience API

A subclass is provided that takes care of the allocation and ready callbacks using ringbuffers of chunks (for Python, this
is the only API provided). This is aimed at use with a fixed pool of chunks that is recycled. Two ringbuffers are used:
one moves completed chunks from the stream to the consumer, and the other returns chunks that are no longer needed
to the stream. It is strongly recommended that both ringbuffers have capacity that is equal to the maximum number of
chunks in the system, so they they never fill up and block (each ringbuffer slot only requires space for a single pointer, so
the cost is low).
While it is possible to add freed chunks directly to the free ringbuffer, a
spead2::recv::chunk_ring_stream::add_free_chunk() convenience function takes care of some
details. It zeros out the heap presence flags, and if the ringbuffer has been stopped, it fails silently rather than throwing
an exception. This avoids the need for exception-handling code when the stream is being shut down.
The ringbuffers are passed to the stream constructor, and can be shared between streams. This provides a mechanism
to have a shared pool of free chunks, or to multiplex chunks from several streams together to a single consumer. In the
latter case, it is often necessary to know which stream produced the chunk. Set the stream ID when constructing each
stream; it is available as an attribute of the corresponding chunks.

88 Chapter 4. Advanced features

spead2, Release 4.3.1

When the stream is stopped by the user, both ringbuffers are stopped too. This makes sharing ringbuffers appropriate only
when the streams have the same lifetime. However (since version 3.6.0), if a stream is stopped due to network activity,
the free ringbuffer is not stopped, and the data ringbuffer is only stopped if this was the last stream sharing the ringbuffer.

4.1.4 Examples

The spead2 source distribution includes a number of examples that use this API, in both C++ and Python.

4.1.5 Advice for senders

The ready callback uses items in the first received packet of each heap. It’s thus critical that the first packet (and ideally,
every packet) of the heap contains immediate items necessary for correctly placing the heap. Senders can ensure this by
using spead2.send.Heap.repeat_pointers.
Item descriptors form part of the heap payload, and hence would get mixed up with the actual data in the payload. It is
thus best to separate heaps into those that only have descriptors and those that only have data. One could also eliminate
descriptors entirely, but they are quite useful for debugging. If descriptors are used, receivers must be prepared to ignore
those heaps.

4.2 Chunking stream groups

While the Chunking receiver allows for high-bandwidth streams to be received with low overhead, it still has a fundamental
scaling limitation: each chunk can only be constructed from a single thread. Chunk stream groups allow this overhead to
be overcome, although not without caveats.
Each stream is still limited to a single thread. However, a group of streams can share the same sequence of chunks, with
each stream contributing a subset of the data in each chunk. Making use of this feature requires that load balancing
is implemented at the network level, using different destination addresses or ports so that the incoming heaps can be
multiplexed into multiple streams.
As with a single chunk stream, the group keeps a sliding window of chunks and obtains new ones from an allocation
callback. When the window slides forward, chunks that fall out the back of the window are provided to a ready callback.
Each member stream also has its own sliding window, which can be smaller (but not larger) than the group’s window.
When the group’s window slides forward, the streams’ windows are adjusted to ensure they still fit within the group’s
window. In other words, a stream’s window determines how much reordering is tolerated within a stream, while the
group’s window determines how out-of-sync the streams are allowed to become.
When desynchronisation does occur, there is a choice of strategies. The default strategy is eager but potentially lossy:
when the group’s window moves forward, the trailing chunk is marked ready as soon as possible, even if this causes some
stream windows to shrink below their normal size. An alternative strategy is lossless: when the group’s window needs to
move forward, it is blocked until all the member streams have caught up. This latter mode is intended for use with lossless
transports such as TCP. However, if one of the component streams stops functioning (for example, because it is routed
on a network path that is down) it prevents the entire group from making forward progress.
The general flow (in C++) is

1. Create a chunk_stream_group_config.
2. Create a chunk_stream_group.
3. Use chunk_stream_group::emplace_back() to create the streams.
4. Add readers to the streams.
5. Process the data.

4.2. Chunking stream groups 89

spead2, Release 4.3.1

6. Optionally, call chunk_stream_group::stop() (otherwise it will be called on destruction).
7. Destroy the group.

In Python the process is similar, although garbage collection replaces explicit destruction.

4.2.1 Ringbuffer convenience API

As for standalone chunk streams, there is a simplified API using ringbuffers, which is also the only API available for
Python. A chunk_stream_ring_group is a group that allocates data from one ringbuffer and send ready data to
another. The description of that api largely applies here too. The ringbuffers can be shared between groups.

4.2.2 Caveats

This is an advanced API that sacrifices some user-friendliness for performance, and thus some care is needed to use it
safely.

• It is vital that all the streams can make forward progress independently, as otherwise deadlocks can occur. For
example, if they share a thread pool, the pool must have at least as many threads as streams. It’s recommended that
each stream has its own single-threaded thread pool.

• The streams must all be added to the group before adding any readers to the streams. Once a group has received
some data, an exception will be thrown if one attempts to add a new stream.

• The stream ID associated with each chunk will be the stream ID of one of the component streams, but it is undefined
which one.

• When the allocate and ready callbacks are invoked, it’s not specified which stream’s batch statistics pointer will be
passed.

• Two streams must not write to the same bytes of a chunk (in the payload, present array or extra data), as this is
undefined behaviour in C++.

• Calling stop() on a member stream will stop the whole group.

4.3 Receiver stream statistics

A receive stream can be queried for statistics about the packets and heaps of the stream. Note that while the statistics
below are expected to be stable except where otherwise noted, their exact interpretation in edge cases is subject to change
as the implementation evolves. It is intended for instrumentation, rather than for driving application logic.
Each time the statistics are queried, an internally consistent view is returned. However, it is not synchronised with other
aspects of the stream. For example, it’s theoretically possible to retrieve 5 heaps from the stream iterator, then find that
the heaps statistic is (briefly) 4. Querying the statistics is somewhat expensive, so if multiple statistics are needed, it is
advisable to assign the result to a local variable first.
Some readers process packets in batches, and the statistics are only updated after a whole batch is added. This can be
particularly noticeable if the ringbuffer fills up and blocks the reader, as this prevents the batch from completing and so
heaps that have already been received by user code might not be reflected in the statistics.
Statistics can be accessed in several ways:

1. Amap/dictionary-like interface, by name. This includes iteration with standard Python or C++ iterator conventions.
2. A list-like interface, by index. This is more efficient, so may be useful if statistics are being accessed very

frequently, but less convenient. To determine the index for a particular statistic, use StreamConfig.
get_stat_index() (Python) or spead2::recv::stream_config::get_stat_index() (C++).

90 Chapter 4. Advanced features

spead2, Release 4.3.1

3. By attribute/field access. This is for backwards compatibility and is only available for the core statistics. New code
should prefer the other interfaces.

4.3.1 Core statistics

heaps
Total number of heaps put into the stream. This includes incomplete heaps, and complete heaps that were received
but did not make it into the ringbuffer before stop() was called. It excludes the heap that contained the stop
item.

incomplete_heaps_evicted
Number of incomplete heaps that were evicted from the buffer to make room for new data.

incomplete_heaps_flushed
Number of incomplete heaps that were still in the buffer when the stream stopped.

packets
Total number of packets received, including the one containing the stop item.

batches
Number of batches of packets. Some readers are able to take multiple packets from the network in one go, and
each time this forms a batch.

worker_blocked
Number of times a worker thread was blocked because the ringbuffer was full. If this is non-zero, it indicates that
the stream is not being read fast enough, or that the heaps constructor parameter to the RingStreamConfig
needs to be increased to buffer sudden bursts.
In C++ this statistic is always present, but is only used by spead2::recv::ring_stream.

max_batch
Maximum number of packets received as a unit. This is only applicable to readers that support fetching a batch of
packets from the source.

single_packet_heaps
Number of heaps that were entirely contained in a single packet. These take a slightly faster path as it is not
necessary to reassemble them.

search_dist
Number of hash table entries searched to find the heaps associated with packets. This is intended for debug-
ging/profiling spead2 and may be removed without notice.

4.3.2 Chunk receiver statistics

These statistics are only present when using a chunking receiver.
too_old_heaps

Heaps for which the chunk placement function returned a non-negative chunk ID, but one which was too old to be
accepted (behind the moving window).

rejected_heaps
Heaps for which the chunk placement function returned a negative chunk ID to indicate that the heap should be
discarded.

4.3. Receiver stream statistics 91

spead2, Release 4.3.1

4.3.3 Custom statistics

It may be convenient for user code to collect additional statistics to be made available through the existing statistics
framework. The framework takes care of thread-safe transfer of statistics from the worker threads that run the networking
to the thread that is querying the statistics. However, this means that these custom statistics can only be safely updated
from these worker threads. Some examples of places where it is safe to do so:

1. In the heap_ready virtual function.
2. In a custom memory allocator (when called to allocate memory for a heap).
3. In a custom memory scatter function.
4. In a chunk placement callback (see Chunking receiver).

All but the last are currently available in the C++ API only. They should use
spead2::recv::stream::batch_stats. For the chunk placement callback, a pointer to the batch statistics is
available in the spead2::recv::chunk_place_data structure.
As the name implies, this provides access only to statistics collected for a batch of packets received at the same time. At
the end of the batch, the long-term statistics for the stream are updated from these batch statistics. The manner in which
this update occurs depends on the mode of the statistic, which is one of the following:
counter

A count of events. The batch value is added to the long-term value.
maximum

A high water mark. The long-term value is set to the maximum of the previous value and the batch value.
The mode is set when registering the statistic with the stream config (StreamConfig.add_stat() or
spead2::recv::stream_config::add_stat()).
Registration also returns the “index” of the statistic, which is used when accessing the batch statistics array. If many
statistics are being registered, it may be inconvenient to keep track of all their indices. The index is guaranteed to increase
by one with each registration, so one can instead record just the first index, and then compute other indices from it as
needed.
Since all statistics (custom and core) share a single namespace, it is recommended that you prefix your custom statistics
with a package name and a dot (mypackage.mystatistic) to ensure that they do not conflict with future statistics
added by spead2. It’s also recommended to stick to printable ASCII for maximum compatibility across language bindings.

92 Chapter 4. Advanced features

CHAPTER

FIVE

PERFORMANCE TUNING

While spead2 tries to be performant out of the box, there are a number of ways one can tune both the system and the
application using spead2. It is usually necessary to do at least some of these steps to achieve performance of 10Gb/s+,
but your mileage may vary depending on your hardware and application.
This guide focuses mostly on the problem of receiving data, because my experience with high-bandwidth SPEAD has
been with data produced by FPGAs. Nevertheless, some of these tips also apply to sending data.
All advice is for a GNU/Linux system with an x86-64 CPU. You will need to consult other documentation to find equiv-
alent commands for other systems.

5.1 System tuning

5.1.1 Kernel bypass networking

For the best performance it is necessary to bypass the kernel networking stack. At present the only kernel bypass technol-
ogy supported by spead2 is ibverbs. Refer to that documentation for setup and tuning instructions. Note that at present
this is only known to work with NVIDIA NICs.

5.1.2 Kernel network stack

If you’re unable to bypass the kernel networking stack, this section has some advice on tuning it. The first thing to do is
to increase the maximum socket buffer sizes. See Introduction to spead2 for details.
The kernel firewall can affect performance, particularly if small packets are being used (in this context, anything that isn’t
a jumbo frame is considered “small”). If possible, remove all firewall rules and unload the kernel modules (those prefixed
with ipt or nf). In particular, simply having the nf_conntrack module loaded can reduce performance by several
percent.
IP fragmentation also causes performance problems on the receiver. Check that the routers in your network have a
sufficiently large MTU that packets do not get fragmented, particularly if using jumbo frames. You can use tcpdump
-v to see fragments.
The above all applies to UDP. For TCP, dropped packets are far less of a concern, and overly large buffers may actually
be counter-productive as they do not fit in cache and lead to buffer-bloat. The simplest way to improve performance is to
increase the packet size in the sender.

93

spead2, Release 4.3.1

Routing

The constructors for the TCP and UDP stream classes take an interface_address argument, but the actual behaviour
depends on the constructor used and the OS. For multicast constructors, it sets the IP_MULTICAST_IF socket option
and hence directly determines the interface used. In other cases, it only determines the source IP address (via bind(2)),
and the effect depends on the operating system. On Linux, the routing table determines the interface, so this setting will
only impact routing if you have policy routing configured.

5.1.3 CPU

On a system with multiple CPU sockets, it is important to pin the process using spead2 to a single socket, so that memory
accesses do not cross the inter-socket bus. For best performance, use the same socket as the NIC, which can be determined
from the output of hwloc-ls. See numactl(8), hwloc-ls(1), hwloc-bind(1).
There are a number of settings that can be adjusted to improve the system’s ability to respond to bursts of data. These
will probably not improve peak performance, but can reduce the number of lost heaps, particularly when a stream starts
and the system must ramp up performance in response.

• Disable hyperthreading.
• Disable CPU frequency scaling.
• Disable C states beyond C1 (for example, by passing processor.max_cstate=1 to the Linux kernel). Dis-
abling C1 as well may reduce latency, but will likely limit the gains from Turbo Boost.

• Investigate disabling the P-state driver by passing intel_pstate=disable on the kernel command line. The
P-state driver has sometimes been reported to be much slower1,2, but can also be faster3.

• Disable adaptive interrupt moderation on the NIC: ethtool -C interface adaptive-rx off
adaptive-tx off. You may then need to experiment to tune the interrupt moderation settings — consult
ethtool(8) for details (does not apply if using ibverbs).

• Disable Ethernet flow control: ethtool -A interface rx off tx off.
• Use the isolcpus kernel option to completely isolate some CPU cores from other tasks, and pin the receiver to those
cores (I have not actually tried this).

• Use chrt(1) to run the receiver with real-time scheduling (I have not actually tried this).

AMD Epyc tuning

There are also some specific BIOS settings that are important for AMD Epyc systems (these have been tried on Rome
and Milan systems):

• Set APBDIS to 1 and Fixed SOC PState to P0. This prevents the bus from going into low-power states when it
thinks there isn’t enough work.

• Disable DF Cstates.
• Enable PCIe relaxed ordering.
• Experiment to find the best NUMA-per-socket setting. NPS4 gives slightly higher throughput but it also seems to
let GPUs starve the NIC.

• When placing cards into slots, be aware that slots that connect to the same quadrant of the CPU (NUMA node, in
NPS4 mode) contend for bandwidth to the CPU.

1 https://www.phoronix.com/scan.php?page=article&item=intel_pstate_linux315
2 https://www.phoronix.com/scan.php?page=article&item=linux-47-schedutil
3 https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.4-CPUFreq-P-State-Gov

94 Chapter 5. Performance tuning

https://kindlund.wordpress.com/2007/11/19/configuring-multiple-default-routes-in-linux/
https://codywu2010.wordpress.com/2015/09/27/isolcpus-numactl-and-taskset/
https://www.phoronix.com/scan.php?page=article&item=intel_pstate_linux315
https://www.phoronix.com/scan.php?page=article&item=linux-47-schedutil
https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.4-CPUFreq-P-State-Gov

spead2, Release 4.3.1

The above have all been observed to make significant differences in spead2 applications. Below are some other general
tuning recommendations found on the internet, for which it’s unclear whether it will make a difference:

• Disable IOMMU.
• Set local APIC mode to x2APIC.
• Set Preferred I/O to manual and Preferred I/O bus to the bus containing the NIC (only really useful for a single
NIC).

• On Milan, set LCLK frequency control to the maximum frequency.

Interrupt affinity

NICs typically have multiple send and receive queues with their own interrupt numbers, and each interrupt is typically
directed to a particular CPU core. This means that not all CPU cores are equal when it comes to pinning threads.
Generally you want the receiver to run “close” to the core handling the interrupts, so that the interrupt handler can wake it
up easily, and driver data structures can be cached; but if they are on the same core it can sometimes reduce performance
by contending for resources.
The drivers for NVIDIANICs include some tools (show_irq_affinity.sh, set_irq_affinity.sh) to show
and set IRQ affinities, which can help to set the affinities in a predictable way. Note that for this to be effective, the
irqbalance daemon needs to be disabled, as it will try to dynamically adjust IRQ affinities based on usage patterns.

5.2 Protocol design

If you are designing a new SPEAD-based protocol, you have an opportunity to make design choices that will make it
easier for the sender and/or receiver to reach the desired performance.

5.2.1 Heap size

The primary influence comes from heap size. There is some degree of overhead for every heap (particularly for a Python
receiver), and very small heaps will cause this overhead to dominate. Heaps smaller than 16KiB are not recommended.
Very large heaps that do not fit into CPU caches will also reduce performance, but not excessively. Memory usage also
depends on the heap size. A number of application tuning techniques described below also depend on knowing the heap
payload size a priori; thus, it is good practice to communicate this the receiver in some way, whether by sending the
descriptor early in the SPEAD stream or by an out-of-band method.

5.2.2 Packet size

Packet size is not strictly part of the protocol, but also has a large impact on performance. For 10Gb/s or faster streams,
jumbo frames are highly recommended, although with the kernel bypass techniques described below, this is far less of an
issue.
When using spead2 on the send side, the default packet size is 1472 bytes, which is a safe value for IPv4 in a standard
Ethernet setup4. The packet size is set in the StreamConfig. You should pick a packet size, that, when added to the
overhead for IP and UDP headers, does not exceed the MTU of the link. For example, with IPv4 and an MTU of 9200,
use a packet size of 9172.
When using TCP/IP, the packet size can be much larger (e.g. 65536) as it no longer corresponds to IP packets.

4 The UDP and IP header together add 28 bytes, bringing the IP packet to the conventional MTU of 1500 bytes.

5.2. Protocol design 95

spead2, Release 4.3.1

5.2.3 Alignment

Because items directly reference the received data (where possible), it is possible that data will be misaligned. While
numpy allows this, it could make access to the data inefficient. The sender should ensure that data are aligned. The
spead2 sending API currently does not provide a way to enforce this, but using items with round sizes will help.

5.2.4 Endianness

When using numpy builtin types, data are converted to native endian when they are received, to allow for more efficient
operations on them. This can reduce the maximum rate at which packets are received. Thus, using the native endian on
the wire (little-endian for x86) will give better performance.

5.2.5 Data format

Item descriptors can be specified using either a format or a dtype (numpy data type). In many common cases, either can
be used, and performance on a Python receiver should be the same (a PySPEAD receiver, however, will be much faster
with dtype). The dtype is the only way to use Fortran order or little-endian. The format approach is easier for a C++
receiver to parse (since it does not need to decode a Python literal). It also allows for a wider variety of types (such as bit
vectors), but encoding or decoding these types in Python takes a very slow path.

5.3 Application tuning

This section describes a number of ways the application can be modified to improve performance. Most of these tuning
options can be explored using a provided benchmarking tool which measures the sustained performance on a connection.
This makes it possible to quickly identify the techniques that will make the most difference before implementing them.

5.3.1 Memory allocation

Using a memory pool is the single most important tool for fast and reliable data transfer. It is particularly important when
heap sizes are large enough that malloc() and free() use mmap() (M_MMAP_THRESHOLD in glibc). For very
small heaps, memory pooling may be a net loss.
To use a memory pool, it is necessary to know the maximum heap payload size (a conservative estimate is fine too — you
will just use more memory). You also need to size the pool appropriately. It is possible to specify a small initial size and
a larger maximum; however, each time the pool grows the CPU will be busy with allocation and may drop packets. To
avoid starvation, you will need to provide:

• A buffer per partial heap (max_heaps parameter to spead2.recv.Stream)
• A buffer per complete heap in the ring buffer (ring_heaps parameter to spead2.recv.Stream)
• A buffer for every heap that has been taken off the ring buffer but not yet destroyed.
• A few extra for heaps that are in-flight between queues. The exact number may vary between releases, but 4 should
be safe.

In general, it is best to err on the side of adding a few extra, provided that this does not consume too much memory. At
present there are unfortunately no good tools for analysing memory pool performance.

96 Chapter 5. Performance tuning

spead2, Release 4.3.1

Chunking receiver

An alternative to using memory pools is to use the Chunking receiver. It has the same benefit of keeping memory allocated
within the application rather than returning it to the OS.

Heap lifetime (Python)

All the payload for a heap is stored in a single memory allocation, and where possible, items reference this memory. This
means that the entire heap remains live as long as any of the values encoded in it are live. Thus, a small but seldom-
changing value can cause a very large heap to remain live long after the rest of the values in that heap have been replaced.
This can waste memory, and also affects memory pool sizing.
To avoid this, senders should try to group items together that are updated at the same frequency, rather than mixing low-
and high-frequency items in the same heap. Receivers can avoid this problem by copying values that are known to be
slowly varying.

Custom allocators

If you are doing an extra copy purely to put values into a special memory type (for example, shared mem-
ory to communicate with another process, or pinned memory for transfer to a GPU), then consider subclassing
spead2::memory_allocator (C++ only), or using a Chunking receiver.

5.3.2 Tuning based on heap size

The library has a number of tuning parameters that are reasonable for medium-to-large heaps (megabytes or larger). If
using many smaller heaps, some of the tuning parameters may need to be adjusted. In particular

• Increase the max_heaps parameter to the spead2.send.StreamConfig constructor.
• Increase the max_heaps parameter to the spead2.recv.Stream constructor if you expect the network to
reorder packets significantly (e.g., because data is arriving from multiple senders which are not completely syn-
chronised). For single-packet heaps this has no effect.

• Increase the ring_heaps parameter to the spead2.recv.Stream constructor to reduce lock contention. This
has rapidly diminishing returns beyond about 16.

It is important to experiment to determine good values. Simply cranking everything way up can actually reduce perfor-
mance by increase memory usage and thus reducing cache efficiency.
For very large heaps (gigabytes) some of these values can be decreased to 2 (or possibly even 1) to keep memory usage
under control.

5.3.3 Thread pools

Each stream in spead2 has an associated thread pool, which provides worker threads for handling incoming or outgoing
packets. Each thread pool can have some number of threads, defaulting to 1. Here are some rules of thumb:

• For a small number of streams (up to about the number of CPU cores), it is best to have one single-threaded thread
pool per stream. This gives better cache affinity than a shared thread pool.

• For a large number of lower-bandwidth streams, use a shared thread pool with multiple threads. The number of
threads should be chosen based on the number of CPU cores that you can dedicate to packet handling rather than
other tasks in your application.

5.3. Application tuning 97

spead2, Release 4.3.1

• A single stream cannot be processed by multiple threads at the same time, so there is never any benefit (and often
detriment) to have more threads in a thread pool than there are streams serviced by that thread pool.

• Jitter (experienced as occasionally lost heaps) can be reduced by passing an affinity list to the thread pool con-
structor, to pin threads to specific cores. The main thread can be pinned as well, using spead2.ThreadPool.
set_affinity().

98 Chapter 5. Performance tuning

CHAPTER

SIX

COMMAND-LINE TOOLS

6.1 spead2_bench

Abenchmarking tool is provided to estimate themaximum throughput for UDP. There are two versions: one implemented
in Python 3 (spead2_bench.py) and one in C++ (spead2_bench), which are installed by the corresponding
installers. The examples show the Python version, but the C++ version functions very similarly. However, they cannot be
mixed: use the same version on each end of the connection.
On the receiver, pick a port number (which must be free for both TCP and UDP) and run

spead2_bench.py agent <port>

Then, on the sender, run

spead2_bench.py master [options] <host> <port>

where host is the hostname of the receiver. This script will run tests at a variety of speeds to determine the maximum
speed at which the connection seems reliable most of the time. This speed is right at the edge of stability: for a totally
reliable setup, you should use a lower speed.

6.2 spead2_send/spead2_recv

There are also separate spead2_send and spead2_recv (and Python 3 equivalent) programs. The former generates
a stream of meaningless data, while the latter consumes an existing stream and reports the heaps and items that it finds.
Apart from being useful for debugging a stream, spead2_recv has a similar plethora of command-line options for
tuning that allow for exploration.

6.3 mcdump

mcdump is a tool similar to tcpdump, but specialised for high-speed capture of UDP traffic using hardware that supports
the Infiniband Verbs API. It has only been tested on NVIDIA ConnectX NICs. Like gulp, it uses a separate thread for
disk I/O and CPU core affinity to achieve reliable performance. With a sufficiently fast disk subsystem, it is able to capture
line rate from a 40Gb/s adapter.
It is not limited to capturing SPEAD data. It is included with spead2 rather than released separately because it reuses a
lot of the spead2 code.

99

http://www.tcpdump.org/
http://corey.elsewhere.org/gulp/

spead2, Release 4.3.1

6.3.1 Installation

The tool is automatically compiled and installed with spead2, provided that libibverbs support is detected at configure
time.
It may also be necessary to configure the system to work with ibverbs. See Support for ibverbs for more information.

6.3.2 Usage

The simplest incantation is

mcdump -i xx.xx.xx.xx output.pcap yy.yy.yy.yy:zzzz

which will capture on the interface with IP address xx.xx.xx.xx, for the multicast group yy.yy.yy.yy on UDP port zzzz.
mcdump will take care of subscribing to the multicast group. Note that only IPv4 is supported. Capture continues until
interrupted by Ctrl-C. You can also list more group:port pairs, which will all stored in the same pcap file.
While originally written for multicast, mcdump also supports unicast. An IP address must still be provided; usually it will
be the same as the interface address, but it could be a different address if the interface has multiple IP addresses.
You can also specify - in place of the filename to suppress the write to file. This is useful to simply count the bytes/packets
received without being limited by disk throughput.
Unfortunately, unlike tcpdump, it is not possible to directly tell whether packets were dropped. NIC counters (on Linux,
accessed with ethtool -S) can give an indication, although sometimes packets are dropped during the shutdown
process.
These options are important for performance:
-N <cpu>, -C <cpu>, -D <cpu>

Set CPU core IDs for various threads. The -D option can be repeated multiple times to use multiple threads for
disk I/O. By default, the threads are not bound to any particular core. It is recommended that these cores be on the
same CPU socket as the NIC.

--direct-io

Use the O_DIRECT flag to open the file. This bypasses the kernel page cache, and can in some cases yield higher
performance. However, not all filesystems support it, and it can also reduce performance when capturing a small
enough amount of data that it will fit into RAM.

--count <count>

Stop after <count> packets have been received. Without this option, mcdump will run until SIGINT (Ctrl-C) is
received.

6.3.3 Limitations

• Only IPv4 is supported.
• It is not optimised for small packets (below about 1KB). Packet capture rates top out around 6Mpps for current
hardware.

100 Chapter 6. Command-line tools

spead2, Release 4.3.1

6.4 spead2_net_raw

When using ibverbs, it is necessary to have the CAP_NET_RAW capability on Linux. While this can be achieved by
running as root, doing so may be undesirable. The spead2_net_raw utility program can be used to simplify running
ibverbs applications. To use it, the program must first be given the capability. After installation, this can be done by
running

sudo setcap cap_net_raw+p /usr/local/bin/spead2_net_raw

Adjust the path as necessary to match your installation. If spead2_net_raw did not get installed, check that you have
the libcap development headers installed (for example, libcap-dev in Ubuntu), and rerun configure to detect it.
Now you can prefix any command with spead2_net_raw and it will have the CAP_NET_RAW capability. It is an
“ambient” capability, so all child processes will have the capability too, which can be useful if the process you run is a
shell.

Warning: After doing the above, any user on the system that can run spead2_net_raw will be able to intercept
any incoming network traffic or generate arbitrary outgoing traffic. You should not do this blindly if there are untrusted
users on your system, or if the system allows untrusted code to run outside of a secure sandbox.

This is not the only way to give spead2_net_raw the capability (you can, for example, make it an “inherited” capa-
bility), but a full discussion of the Linux capabilities model is beyond the scope of this manual.

6.4. spead2_net_raw 101

spead2, Release 4.3.1

102 Chapter 6. Command-line tools

CHAPTER

SEVEN

MIGRATING TO VERSION 3

Version 3 makes a number of breaking changes, for the purpose of keeping the number of constructor arguments under
control and making future extension more manageable. Almost all code will need to be updated, but the updates will in
most cases be minor.
To allow for code that wishes to support both version 3 and older versions, C++ macros are defined to allow the version
number to be interrogated at compile time. Thus, version 3 can be detected as

#if defined(SPEAD2_MAJOR) && SPEAD2_MAJOR >= 3
// Version 3 or later
#else
// Older
#endif

Note that version 3.0.0b1 did not define these macros, but also did not include the breaking changes.
SPEAD2_MAJOR

Major version of spead2 e.g., 3 for version 3.4.6.
SPEAD2_MINOR

Minor version of spead2 e.g., 4 for version 3.4.6.
SPEAD2_PATCH

Patch level of spead2 e.g., 6 for version 3.4.6.
SPEAD2_VERSION

Full spead2 version number, as a string constant.
In Python, one can get the full version string from spead2.__version__. Use the classes in packaging.
version to analyse it.

7.1 Receive stream configuration

Prior to version 3, some parameters to configure a stream were passed directly to the constructor (e.g., the max-
imum number of partial heaps), while others were set by methods after construction (such as the memory alloca-
tor). In version 3, all these parameters are set at construction time, and they are held in helper classes spead2.
recv.StreamConfig and spead2.recv.RingStreamConfig (spead2::recv::stream_config
and spead2::recv::ring_stream_config for C++). Code will need to be modified to construct these helper
objects.
Similarly, for ibverbs there is now a spread.recv.UdpIbvConfig that is used to configure the reader. The old
forms of spead.recv.Stream.add_udp_ibv_reader() are still present but are deprecated.

103

spead2, Release 4.3.1

In version 2 it was also possible (although not recommended) to change parameters like the memory allocator after readers
had already been placed. For efficiency reasons this is no longer supported in version 3.

7.2 Send stream configuration

The changes for sending are more minor: the constructor for the Python class spead2.send.StreamConfig now
only takes keyword arguments, and the C++ equivalent spead2::send::stream_config takes no constructor
arguments. To make it convenient to construct temporaries, the setter methods return the object, allowing configurations
to be constructed in a “fluent” style e.g.:

spead2::send::stream_config().set_max_packet_size(9172).set_rate(1e6)

For ibverbs streams the changes are more significant. There is now a spead2.send.UdpIbvConfig class that
works similarly to spead2.send.StreamConfig, but configures properties specific to the ibverbs stream. The old
constructor is still available (but deprecated); however, the constants UdpIbvStream.DEFAULT_BUFFER_SIZE
and UdpIbvStream.DEFAULT_MAX_POLL have moved to the UdpIbvConfig class.

7.3 Substreams

A new feature is the ability to create a send stream with multiple destinations and select the destination on a per-heap
basis (see Substreams for more information). Supporting this cleanly required a number of changes:

• The spead2.send.InprocStream.queue attribute has been replaced with queues. Similarly, the C++
spead2::send::inproc_stream::get_queue() has been replaced by get_queues(). The orig-
inals are still present but deprecated, and raise a RuntimeError if the stream was constructed with multiple
queues.

• The constructors for most send stream types now accept a list of endpoints (or queues) rather than a single endpoint
(queue). The old constructors are still supported for backwards compatibility, but are deprecated.

• The spead2_send and spead2_send.py example programs now take the destination in the form
host:port instead of host port, and support multiple destinations.

7.4 Out-of-order packets

In prior versions of spead2, the packets forming a single heap could be received in any order. Starting with version 3, the
default is to assume that packets arrive in order. Refer to Packet ordering for more details.

7.5 Loop argument to asyncio functions

The Python asyncio-based classes and functions no longer take a loop argument. As of Python 3.6, asyncio.
get_event_loop() returns the executing event loop, so there is no need to pass the loop explicitly.

104 Chapter 7. Migrating to version 3

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop

spead2, Release 4.3.1

7.6 Command-line arguments in tools

The command-line handling in spead2_send, spead2_recv and spead2_bench has been overhauled and made
more consistent. For example, spead_bench now supports the--ttl option, and--send-ibv is now an argument-
less flag with the interface address given by --send-bind (and similarly for receive). See the help for each command
for details of the current options.

7.7 Removal of deprecated functionality

The following functions were deprecated in version 2 and have been removed in version 3:
• C++ stream constructors that specified a socket but not an io_service (they could not be supported with Boost
1.70 onwards).

• Stream constructors that took both an existing (but unconnected) socket and a buffer size or a port to bind to. The
caller should instead bind the socket (if receiving) and set any desired buffer size socket option.

7.8 Queue depth for sending with ibverbs

When using ibverbs to send data, heaps were previously considered complete once the packets were submitted to the
hardware. They’re now only considered complete once the hardware has indicated completion, which allows for errors
to be reported. While there are no breaking API changes, if the heaps are very small it may be necessary to increase
max_heaps in StreamConfig so that enough heaps can be in flight to fully utilise the buffer.

7.6. Command-line arguments in tools 105

spead2, Release 4.3.1

106 Chapter 7. Migrating to version 3

CHAPTER

EIGHT

MIGRATING TO VERSION 4

Unlike version 3, version 4 does not make substantial changes to the spead2 API, although it does drop deprecated
functionality. It replaces the build system and increases the minimum version requirements, which may have implications
for how you install, link to or use spead2.

8.1 Removed functionality

The following deprecated functionality has been removed:

8.1.1 C++

Functionality Replacement
recv::udp_ibv_reader::default_buffer_size recv::udp_ibv_config::default_buffer_size
recv::udp_ibv_reader::default_max_poll recv::udp_ibv_config::default_max_poll
send::udp_ibv_stream::default_buffer_size send::udp_ibv_config::default_buffer_size
send::udp_ibv_stream::default_max_poll send::udp_ibv_config::default_max_poll
recv::udp_ibv_reader constructors that do not take a
recv::udp_ibv_config

constructor that takes a
recv::udp_ibv_config

send::udp_ibv_stream constructor that does not take a
send::udp_ibv_config

constructor that takes a
send::udp_ibv_config

send::inproc_stream constructor taking a single queue pass a vector containing a single queue
send::inproc_stream::get_queue() send::inproc_stream::get_queues()[0]
send::tcp_stream and send::udp_stream constructors
taking a single endpoint

pass a vector containing a single endpoint

107

spead2, Release 4.3.1

8.1.2 Python

recv.Stream.DEFAULT_UDP_IBV_BUFFER_SIZE recv.UdpIbvConfig.
DEFAULT_BUFFER_SIZE

recv.Stream.DEFAULT_UDP_IBV_MAX_SIZE recv.UdpIbvConfig.
DEFAULT_MAX_SIZE

recv.Stream.DEFAULT_UDP_IBV_MAX_POLL recv.UdpIbvConfig.
DEFAULT_MAX_POLL

send.UdpIbvStream.DEFAULT_BUFFER_SIZE send.UdpIbvConfig.
DEFAULT_BUFFER_SIZE

send.UdpIbvStream.DEFAULT_MAX_POLL send.UdpIbvConfig.
DEFAULT_MAX_POLL

recv.Stream.add_udp_ibv_reader() overload that does not
take a recv.UdpIbvConfig

Pass a recv.UdpIbvConfig

send.UdpIbvStream constructors that do not take a send.
UdpIbvConfig

Pass a send.UdpIbvConfig

send.InprocStream constructor taking a single queue Pass a list containing a single queue
send.InprocStream.queue send.InprocStream.

queues[0]
send.TcpStream and send.UdpStream constructors taking a sin-
gle hostname and port

Pass a list containing a single (host,
port) tuple

8.2 Meson

The autotools build system has been replaced by Meson. This mainly affects C++ users, as for Python this is hidden
behind the Python packaging interface. Refer to the Introduction for installation instructions.
The old build system had a number of options to adjust the build. The table below shows corresponding Meson options:

108 Chapter 8. Migrating to version 4

spead2, Release 4.3.1

autotools meson
--enable-debug-symbols debug=true or buildtype=...
--enable-debug-log max_log_level=debug
--enable-coverage b_coverage=true
--disable-optimized optimization=0 or buildtype=debug
--enable-lto b_lto=true
--enable-shared default_library=both
--without-program-options tools=disabled
--without-ibv ibv=disabled
--without-mlx5dv mlx5dv=disabled
--without-ibv-hw-rate-limit ibv_hw_rate_limit=disabled
--without-pcap pcap=disabled
--without-cap cap=disabled
--without-recvmmsg recvmmsg=disabled
--without-sendmmsg sendmmsg=disabled
--without-eventfd eventfd=disabled
--without-posix-semaphores posix_semaphores=disabled
--without-pthread_setaffinity_np pthread_setaffinity_np=disabled
--without-fmv fmv=disabled
--without-movntdq sse2_stream=disabled
--without-cuda cuda=disabled
--without-gdrapi gdrapi=disabled

Link-time optimization no longer requires intervention to select suitable versions of ar and ranlib; Meson takes care
of it.

8.3 C++17

The codebase now uses C++17, whereas older versions used C++11. This might require a newer C++ compiler. See the
Introduction for minimum compiler versions.
Additionally, when compiling against the C++ API, you may need to pass compiler arguments to select at least C++17
(e.g. --std=c++17). GCC 11+ and Clang 16+ support C++17 without a compiler flag, but keep in mind that your
users might use older compilers.

8.3. C++17 109

spead2, Release 4.3.1

8.4 Boost

Boost 1.69+ is now required: from this release, boost_system is a header-only library. You no longer need to link against
any Boost libraries when linking against spead2.

8.5 pcap

The detection logic for libpcap has changed. It used to first try pkg-config, then fall back to testing compilation. It
now tries pkg-config first and falls back to pcap-config. If neither of those methods works, you may need to
upgrade your pcap library.

8.6 Code generation

In older versions of spead2, some of the code was generated and included in the release tarballs. If you used a release,
you would be unaware of this, but trying to build directly from git would require you to run a bootstrap.sh script.
Meson doesn’t have good support for including generated code into releases, so these generated files are no longer included
in the releases, and they are instead created as part of the build. This requires Python, with the jinja2, pycparser
and packaging packaging installed.
An advantage of this approach is that it is now possible to directly build from a git checkout without any preparatory steps.

8.7 Python configuration

When building the Python bindings from source, it was previously only possible to adjust the build-time configuration by
editing source files. With the new build system, it’s now possible to pass options on the command line.

8.8 Python editable installs

Meson-python doesn’t support editable installs with build isolation. To make an editable install, use pip install
--no-build-isolation -e ..

110 Chapter 8. Migrating to version 4

https://meson-python.readthedocs.io/en/latest/how-to-guides/config-settings.html
https://meson-python.readthedocs.io/en/latest/how-to-guides/editable-installs.html

CHAPTER

NINE

DEVELOPER DOCUMENTATION

9.1 Development processes

9.1.1 Getting started with development

Python setup

Refer to the Introduction to spead2 for the prerequisite packages (particularly Python install from source). You will also
need ninja-build, and a Python virtual environment. You can use any tool you like to create the virtual environment, but
it must be located outside of the working copy of the spead2 repository1. I like pyenv (with pyenv-virtualenv), but you
can also use venv or virtualenv directly. It’s also a good idea to install ccache or sccache, as it will make recompilation
much faster.
Check out a copy of spead2 from git, and make it your current directory. Install pre-commit (e.g., with pip install
pre-commit) and run pre-commit install to set it up. This will ensure that commits pass a set of static analysis
checks.
Inside your virtual environment, install the build dependencies. You can find a list of them right at the top of
pyproject.toml.
You’re now ready to make an “editable” installation. This is an installation that will use the files inside your working copy
(recompiling C++ code if necessary), so that you don’t need to explicitly install after each change. To do so, run

pip install --no-build-isolation -e .

See the meson-python documentation for more information about the limitations of editable installs. Also install the
development runtime dependencies:

pip install -r requirements.txt # If Python < 3.12
pip install -r requirements-3.12.txt # If Python >= 3.12

Now you should be able to run the unit tests by executing pytest. It is expected that some tests will be skipped, because
they require specific hardware. Running pytest -ra will show the reasons for skipped tests. You should expect to see
something like:

SKIPPED [23] tests/test_passthrough.py:577: Envar SPEAD2_TEST_IBV_INTERFACE_ADDRESS␣
↪→not set

If you’re running the latest version of Python, it’s possible that numba does not yet support it and so was not installed
above. In that case you will have additional skipped tests e.g.:

1 Meson will show a long error starting with “ERROR: Tried to form an absolute path to a dir in the source tree.” There is also a Meson bug that
causes this error to appear if the source directory is a prefix as a string of the virtual environment path, even if the virtual environment is not inside the
source directory.

111

https://ninja-build.org/
https://github.com/pyenv/pyenv/
https://github.com/pyenv/pyenv-virtualenv
https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/en/latest/user_guide.html
https://ccache.dev/
https://github.com/mozilla/sccache
https://pre-commit.com/
https://meson-python.readthedocs.io/en/latest/how-to-guides/editable-installs.html
https://github.com/mesonbuild/meson/issues/12217

spead2, Release 4.3.1

SKIPPED [1] tests/test_recv_chunk_stream.py:30: could not import 'numba': No module␣
↪→named 'numba'
SKIPPED [1] tests/test_recv_chunk_stream_group.py:30: could not import 'numba': No␣
↪→module named 'numba'

MacOS will have some additional skipped tests. On Linux, there should be no other skipped tests if you have all the
optional dependencies installed. If there are other tests skipped, it is not a show-stopper; it just means you’ll need to rely
on the CI to run those tests for you.

C++ setup

You should start by following the steps for Python. Most of the functionality is only tested via the Python unit tests, so
you will need to be able to run those even if you are only interested in working on the C++ bindings.
You can then follow the Installing spead2 for C++ instructions to build the C++ bindings (you can skip meson in-
stall). From the build directory, also run meson test to run the C++ unit tests. These are a small set of tests that
cover functionality that is not practical to test from the Python API.

Documentation

To install the necessary Python requirements, run pip install -r requirements-readthedocs.txt. You
will also need doxygen and make. Then change to the doc directory and run make. This will build documentation in
doc/_build/html. It is unfortunately normal for there to be a large number of warnings about duplicates.

Coding style

The first rule is just to adhere the existing style. Python code uses black and ruff to enforce style, so if you deviate from
the style those tools will guide you back on track. The Python code generally does not use inline type annotations, because
annotations in the .pyi files take precedence (and spead2 pre-dates Python 3 annotation syntax). New code (particularly
in tests) can be annotated, but it is not required.
Identifiers use US English spelling, but comments, log messages and documentation favour UK spelling.
The C++ code is less consistent in style, but here are some guidelines:

• Use 4 spaces for indentation (never tabs).
• Opening braces go on their own line (Allman style). An exception is that a function may be written entirely on one
line if it is very short.

• Do not use trailing commas.
• Do not add a level of indentation inside namespaces.
• When two levels of namespaces start and end at the same point, use the C++17 nested namespace syntax:

namespace spead2::recv
{
/* Stuff */
} // namespace spead2::recv

• When closing a namespace or a #endif, use a comment to indicate what is being closed, unless it is visually
obvious (nearby and without further nesting).

• Be sparing with using auto to declare local variables. It should ideally be possible for the user to guess what the
type is just by inspecting the code. Good reasons to use auto include:

112 Chapter 9. Developer documentation

https://www.doxygen.nl/
https://black.readthedocs.io/
https://beta.ruff.rs/docs/

spead2, Release 4.3.1

– The type is impossible to specify safely, because it is a lambda, or an implementation-defined type that could
change in future.

– It is an integer type, and explicitly naming the type could inadvertently cause type conversions if the type of
the expression later changed.

– The type is obvious from the initialiser, such as

auto foo = std::make_unique<Foo>(1);

– The type is exceedingly long to write out (iterator types are a good example).
• Start a class with friends, followed by typedefs, member variables, and finally member functions. Put private
members before public ones, unless a specific order is required (for example, to optimise memory layout or to
control initialisation/destruction order).

• Line comments (//) should only be used for one-line comments (maybe two at a push). Use block comments (/*
*/) for longer blocks of text.

• If a member function has an empty body and exists only to implement a concept, it can use anonymous parameters
if they are self-explanatory. Otherwise, unused parameters should be named but have the [[maybe_unused]]
attribute. In some cases a particular compiler may still generate warnings after applying the attribute (GCC 9 has
been seen to do this); in such cases one should place the parameter name inside /* */.

Committing

Before committing, remember to run pre-commit install to set up pre-commit. One of the pre-commit hooks
checks that the requirements files are up to date, and (at the time of writing) depends on having both python3.8 and
python3.12 commands on the path. If you’re not touching the requirements, you can skip this hook by setting the
environment variable SKIP=pip-compile when committing.

Making a pull request

spead2 uses the normal Github workflow for pull requests. There are many guides on the internet to writing good pull
requests, such as this one or this one. A few points to note for spead2:

• Don’t add to the changelog. The changelog for each release is generally prepared just prior to each release. However,
it is a good idea to write a meaningful title for the pull request that could become the changelog entry.

• Once a pull request has been reviewed, don’t force-push changes. Doing so prevents the reviewer from seeing the
difference between the previously-reviewed version and your update. If you’re a stickler for a neat commit history,
ask if you can rebase just prior to merging.

9.1.2 Repository layout

C++

src/*.cpp
Source files. Files are grouped into functionality by prefixes:
src/recv_*.cpp

Receiving data (spead2::recv namespace).
src/send_*.cpp

Sending data (spead2::send namespace).

9.1. Development processes 113

https://github.blog/2015-01-21-how-to-write-the-perfect-pull-request/
https://www.atlassian.com/blog/git/written-unwritten-guide-pull-requests

spead2, Release 4.3.1

src/common_*.cpp
Other general shared code (spead namespace).

src/unittest_*.cpp
C++ unit tests.

src/spead2_*.cpp and src/mcdump.cpp
Command-line utilities.

src/py_*.cpp
Python bindings.

src/*.h
Header files that are only used internally (not installed for users).

include/spead/*.h
Header files that are installed and form the public API. The filenames mostly correspond to the source files.

examples/*.cpp
Example code.

Python

src/spead2/
Source code. This is placed within a src subdirectory so that Python does not automatically import from it unless
explicitly added to the Python path. See Packaging a Python Library for an explanation of the advantages.

src/spead2/tools/
Implementations of the command-line tools.

examples/*.py
Example code.

tests/
Unit tests. These are mainly for use with pytest, but tests/shutdown.py contains tests that are run to ensure
that the interpret shuts down cleanly (see Interpreter shutdown).

Other

gen/
Utilities that run as part of the build.

doc/
Documentation.

9.1.3 Debugging

Debug builds

Meson provides standard infrastructure for doing debug builds. Specifically, these disable optimisation and enable as-
sertions. For C++ builds you can pass --buildtype=debug when setting up the build directory (note that Meson
supports multiple build directories, so you can keep separate directories for release and debug builds if you like). For
Python builds, you can pass -Csetup-args=--buildtype=debug to pip install. Note that for an editable
install, this option is sticky: invoking pip install in future without this option will not reset it to the default, unless
you delete the build directory.

114 Chapter 9. Developer documentation

https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure

spead2, Release 4.3.1

Debug logging

Debug builds do not automatically enable debug-level logging. See the Logging documentation for instructions to do that.

Debug symbols for Python wheels

Occasionally a bug may manifest in a released Python wheel but prove impossible to reproduce with a locally-compiled
version of the package. While it will not give a great debugging experience (because the code is optimised), it is possible
to install separate debug symbols so that one can get line numbers from stack traces. Note that this is only supported on
Linux.
On the Github page for the release is a file called spead2-version-debug.tar.xz. Unpack it into lib/
pythonX.X/site-packages/spead2 inside your virtual environment). You only need to install the .debug
file matching the Python version and architecture. It should have the same name as an existing file in the same directory,
but with the .debug suffix. Once this is done, GDB should be able to load the debug symbols from this file. Note that it
will only work for the released wheel from the same version; if you compile a wheel yourself then the build ID will most
likely not match and GDB will not use it.

Reducing worker threads

Numpy creates a lot of worker threads, which can make it more difficult to find the thread of interest in gdb. Setting the
environment variable OMP_NUM_THREADS to 1 will reduce the number of threads to sift through.

9.1.4 Release checklist

• Update the version number and changelog in doc/changelog.rst
• Update the version number in VERSION.txt
• Update the shared library version number in meson.build:

– If there are ABI changes, update the first number and reset the second to zero.
– Otherwise, increment the second number.

• Check that .pyi stubs have been updated
• Check that Github Actions successfully tested the release and built wheels
• Install the sdist from Github Actions and check that it passes pytest
• Install a wheel from Github Actions and check that it passes pytest
• Tag the release
• Run git push --tags

• Upload the sdist and wheels to PyPI with twine
• Upload the sdist and debug symbols to Github release
• Check that readthedocs has updated itself

9.1. Development processes 115

https://twine.readthedocs.io/
https://spead2.readthedocs.io/

spead2, Release 4.3.1

9.2 Design

This section documents internal design decisions that users will generally not need to be aware of, although some of it
may be useful if you plan to subclass the C++ classes to extend functionality.

9.2.1 Python bindings

The Python bindings are implemented using pybind11, which handles most of the work of exposing C++ classes and
members to Python.

Global Interpreter Lock

The Python Global Interpreter Lock (GIL) is both good news and bad news for the bindings. The good news is that it
ensures that (by default) only one Python thread can be calling the spead2 API at a time, which provides some basic thread
safety. Here’s the bad news (but also read the pybind11 documentation on the topic):

• Without additional steps, blocking calls to the spead2 API would prevent other Python threads from making
progress. Mostly this just hurts performance, but it can even lead to deadlocks. This is mostly handled by ju-
dicious use of pybind11::gil_scoped_release in functions that wait for events or take C++ locks.

• When a thread does not hold the GIL (either because it released it, or because it is a C++ thread created internally)
it cannot safely call Python APIs. While pybind11::object is a very convenient interface for reference
counting, it can cause accidental use of the reference counting APIs through destructors or copy constructors. For
any class that embeds a Python object, it is important to know from which threads it could be destroyed (and in
some cases the core spead2 design has had to be modified to account for this). Some pieces of code that do not
expect to do any reference counting choose to use pybind11::handle instead to eliminate the risk.

• If a worker thread tries to acquire the GIL, this could block for a significant period of time, which in turn could
cause high latency for time-critical work (such as processing packets).
Logging to the Python logging system is one area where this used to be problematic. That has been solved by
putting log messages (as C++ strings) on a ringbuffer and using a dedicated worker thread to pass the log messages
to Python. If this worker thread is blocked, log messages simply accumulate in the ringbuffer, and eventually log
messages get dropped, but the thread that is doing the logging is not blocked.
A similar issue is notifying Python code that some asynchronous work has completed. This is covered in a later
section.

Note that once PEP 703 is implemented, the spead2 bindings may need significant rework to support no-GIL mode.

Semaphores

spead2 uses semaphores extensively for producer/consumer relationships between threads. Dropping the GIL before
calling a blocking function will partially help, but has two potential issues:

1. If the blocking function waits on a semaphore and then takes action that uses the Python API, it will need to
re-acquire the GIL before taking that action.

2. If the user presses Ctrl-C, it will not interrupt the program: it will interrupt the low-level semaphore wait (with
EINTR), but the default semaphore implementation in spead2 will simply retry that wait. Graceful handling of
Ctrl-C requires using PyErr_CheckSignals() to give Python a chance to handle the interrupt.

116 Chapter 9. Developer documentation

https://pybind11.readthedocs.io/
https://pybind11.readthedocs.io/en/stable/advanced/misc.html#gil
https://pybind11.readthedocs.io/en/stable/reference.html#_CPPv46object
https://pybind11.readthedocs.io/en/stable/reference.html#_CPPv46handle
https://peps.python.org/pep-0703/
https://docs.python.org/3/c-api/exceptions.html#c.PyErr_CheckSignals

spead2, Release 4.3.1

To address both concerns, several functions (particularly in ringbuffer) take a variadic number of extra arguments,
which are passed on to semaphore_get(). The Python bindings provide an overload of semaphore_get(), se-
lected by passing an instance of the empty class gil_release_tag, that handles both releasing the GIL and checking
PyErr_CheckSignals() each time the semaphore wait is interrupted.

Asynchronous callbacks

The C++ interface for sending heaps asynchronously takes a callback which is executed when the heap has been trans-
mitted. While the high-level Python interface exposed to users wraps this into an asyncio.Future, the low-level
interface exposed from C++ to Python still takes a callback. However, the callback is Python code and can only be called
with the GIL held. Furthermore, since asyncio is not thread-safe, it should be run in the thread that’s running the
asyncio event loop, rather than the C++ thread that’s doing the networking.
To solve these problems, the C++-level callback doesn’t directly invoke the Python callback. Instead, it puts it in a vector
of deferred callbacks. To wake up the event loop without locking the GIL, it writes data to a file descriptor (eventfd
in Linux, but it’s abstracted by semaphore_fd), which the asyncio event loop watches. The event loop thread then
requests the stream to execute all its deferred callbacks.
As an optimisation, the file descriptor is only touched if the callback list was empty. Thus, a rapid burst of complete heaps
only requires one wakeup. This requires some careful use of a mutex to correctly handle the case where new callbacks
are added while the callback list is being processed.

Interpreter shutdown

If spead2 objects are still present when the Python interpreter is shut down, their destructors may try to interact with the
Python API after it is too late to safely do so. For example, the logging system may try to interact with the GIL after the
GIL has already been destroyed. Thus, some objects need to be shut down earlier in the interpreter shutdown process,
and this is achieved using the atexit module. An exit_stopper class simplifies the process.

9.2.2 Locking and asio for receive

Spead2 uses a somewhat unusual combination of locking with asynchronous I/O. It causes a few problems and ideally
should be redesigned one day. First, let’s introduce some terminology: the user writes code which runs on a thread,
which we’ll call the “user thread” (there may be multiple user threads, but for most functions it’s only safe for one
user thread at a time to interact with a stream). The threads in a ThreadPool, or more generally threads running
boost::asio::io_service::run() (or equivalents) are “worker threads”.
The original sin that leads to many complications is the back-pressure mechanism for receiving: if a ring-buffer is full,
then pushing a heap (or chunk) to it simply blocks the worker thread, rather than signalling to readers that they should stop
listening for data until space becomes available. Blocking a worker thread is generally a bad thing to do in asynchronous
programming, and if not handled carefully can lead to deadlocks. Even when it is safe, it can lead to inefficiencies since the
blocked thread is sitting idle when there could be other work for it. This is one reason that sharing thread pools between
streams is not recommended (another is cache locality). Fixing this would require major and backwards-incompatible
redesign to allow for control-flow signalling.
Locking is needed for a few reasons:

• The user thread and a worker thread may need to access the same data. Version 3 reduced the number of places
this can happen by making most of the configuration immutable, but it is still needed to stop the stream and to
access statistics.

• In a stream with multiple readers and multiple worker threads, it is possible for multiple worker threads to need
access to the stream internals concurrently.

9.2. Design 117

https://docs.python.org/3/c-api/exceptions.html#c.PyErr_CheckSignals
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/atexit.html#module-atexit

spead2, Release 4.3.1

Early versions of spead2 solved these problems using strands, where functions invoked by the user thread would post work
to the strand and use futures to return the result to the user thread. This lead to many issues with deadlocks, and debugging
was difficult because this control flow was not apparent in the call stack. It may be worth revisiting now that there are
fewer places where the user thread needs to interact with the stream internals, but it will be necessary to compare the
performance to the locking approach.

Batching

Even in the absence of contention, locking can be expensive, and we found that taking and releasing a lock for every
packet had a significant cost. The design was thus changed to ensure that multiple packets can be handled with a single
lock. This complements APIs such as recvmmsg() that allow multiple available packets to be retrieved at once.
This batching approach is realised by the spead2::recv::stream::add_packet_state class. Constructing
the class takes a lock on the stream, and the destructor releases it. This class also holds local statistics for the batch, which
are used to update the stream-wide statistics at the end of the batch.
Unfortunately, pushing completed heaps to the user is done with this lock held, which means that not only is the worker
thread blocked if the ringbuffer is full, but any other thread (including a user thread) that needs the lock will also be
blocked.

Stopping

There are four circumstances under which a receive stream can stop:
1. A stream control heap is received from the network.
2. A transport-level event occurs, such as a connection being closed by the remote end.
3. The user calls stream::stop().
4. The user destroys the stream (which implicitly calls stream::stop()).

The first two are referred to as “network stops” and the latter two as “user stops”. Both cases involve call
stream::stop_received(), but only user stops invoke stream::stop().
A fundamental difference between the two cases is that for network stops, the user is generally waiting for data from the
stream, and so one can assume that the ringbuffer will generally empty out in finite time. What’s more, the user may wish
to actually receive all the data that was transmitted prior to the network stop. With user stops, the user is generally not
consuming from the ringbuffer, and it must be possible to stop the stream even if the ringbuffer is full, even if this means
losing data that is still arriving from the network.
To handle user stops correctly, stream classes whose stream_base::heap_ready() function potentially blocks
must override stop() to unblock it. Classes that use ringbuffers (ring_stream, chunk_ring_stream etc.) do
so by stopping the ringbuffer before calling the base class implementation. This causes any blocked (and future) attempts
to push data into the ringbuffer to immediately fail with an exception. This does mean that some data that was received is
dropped. On the other hand, network stops do not immediately stop the ringbuffer, and allow any data still in the stream
to be flushed. This does mean that if there is no consumer for the ringbuffer, the worker thread could be blocked until the
user stop (or resumes consuming from the ringbuffer).

118 Chapter 9. Developer documentation

https://www.boost.org/doc/libs/1_83_0/doc/html/boost_asio/overview/core/strands.html

spead2, Release 4.3.1

9.2.3 Destruction of receive streams

The asynchronous and parallel nature of spead2 makes destroying a receive stream a tricky operation: there may be
pending asio completion handlers that will try to push packets into the stream, leading to a race condition. While asio
guarantees that closing a socket will cancel any pending asynchronous operations on that socket, this doesn’t account for
cases where the operation has already completed but the completion handler is either pending or is currently running.
Up to version 3.11, this was handled by a shutdown protocol between stream and reader. The reader was required to
notify the streamwhen it had completely shut down, andstream::stop()would block until all readers had performed
this notification (via a semaphore). This protocol was complicated, and it relied on the reader being able to make forward
progress while the thread calling stream::stop() was blocked.
Newer versions take a different approach based on shared pointers. The ideal case would be to have the whole stream
always managed by a shared pointer, so that a completion handler that interfaces with the stream could keep a copy of the
shared pointer and thus keep it alive as long as needed. However, that is not possible to do in a backwards-compatible
way. Instead, a minimal set of fields is placed inside a shared pointer, namely:

• The queue_mutex
• A flag indicating whether the stream has stopped.

For convenience, the flag is encoded as a pointer, which holds either a pointer to the stream (if not stopped) or a null
pointer (if stopped). Each completion handler holds a shared reference to this structure. When it wishes to access the
stream, it should:

1. Lock the mutex.
2. Get the pointer back to the stream from the shared structure, aborting if it gets a null pointer.
3. Manipulate the stream.
4. Drop the mutex.

This prevents use-after-free errors because the stream cannot be destroyed without first stopping, and stopping
locks the mutex. Hence, the stream cannot disappear asynchronously during step 3. Note that it can, how-
ever, stop during step 3 if the completion handler causes it to stop. Some protection is added for this:
stream::add_packet_handler::add_packet() will not immediately stop the stream if a stop packet is
received; instead, it will stop it when the stream::add_packet_handler is destroyed.
Using shared pointers in this way can add overhead because atomically incrementing and decrementing reference counts
can be expensive, particularly if it causes cache line migrations between processor cores. To minimise reference count
manipulation, the reader class encapsulates this workflow in its bind_handler()member function, which provides
the facilities to move the shared pointer along a linear chain of completion handlers so that the reference count does not
need to be adjusted.
Readers are only destroyed when the stream is destroyed. This ensures that the reader’s destructor is called from a user’s
thread (which in Python bindings, will hold the GIL). To handle more immediate cleanup when a stream is stopped,
readers may override reader::stop().

9.2.4 Synchronisation in chunk stream groups

For chunk stream groups to achieve the goal of allowing multi-core scaling, it is necessary to minimise locking. The
implementation achieves this by avoiding any packet- or heap-granularity locking, and performing locking only at chunk
granularity. Chunks are assumed to be large enough that this minimises total overhead, although it should be noted that
these locks are expected to be highly contended and there may be further work possible to reduce the overheads.
To avoid the need for heap-level locking, each member stream has its own sliding window with pointers to the chunks,
so that heaps which fall inside an existing chunk can be serviced without locking. However, this causes a problem when
flushing chunks from the group’s window: a stream might still be writing to the chunk at the time. Additionally, it might

9.2. Design 119

spead2, Release 4.3.1

not be possible to allocate a new chunk until an old chunk is flushed e.g., if there is a fixed pool of chunks rather than
dynamic allocation.
The group keeps its own copy of the head positions (oldest chunk) from the individual streams, protected by the group
mutex rather than the streammutexes. The group then maintains its head chunk position to match the oldest head position
of any of the member streams. When the group wishes to evict a chunk, it simply needs to wait for all streams to make
enough progress that the group’s head moves past that chunk.
The wait is achieved using a condition variable that is notified whenever the head position increases. This allows the group
mutex to be dropped while waiting, which prevents the deadlocks that might otherwise occur if the mutex was held while
waiting and another stream was attemping to lock the group mutex to make forward progress.
In lossless eviction mode, this is all that is needed, although it is non-trivial to see that this won’t deadlock with
all the streams sitting in the wait loop waiting for other streams to make forward progress. That this cannot hap-
pen is due to the requirement that the stream’s window cannot be larger than the group’s. Consider the active call
to chunk_stream_group::get_chunk() with the smallest chunk ID. That stream is guaranteed to have al-
ready readied any chunk due to be evicted from the group, and the same is true of any other stream that is waiting in
get_chunk(), and so forward progress depends only on streams that are not blocked in get_chunk().
In lossy eviction mode, we need to make sure that such streams make forward progress even if no new packets arrive on
them. This is achieved by posting an asynchronous callback to all streams requesting them to flush out chunks that are
now too old. The callback will never reach streams that have already stopped; we handle this at the time the stream stops,
by treating it as having a head of INT64_MAX.
While lossless mode is normally allowed to block indefinitely, we do need to interrupt things in
chunk_stream_group::stop(). This is handled similarly to lossy eviction mode, where all streams are
requested to flush up to INT64_MAX.

9.2.5 Send rate limiting

The basic principle behind the rate limiting is that is that after sending a packet, one should sleep for some time before
sending the next packet, to create gaps on the wire. However, there are a number of challenges:

1. Checking the time has some cost, and sleeping has quite a large cost. Sleeping after every packet can add so much
cost that one can’t keep up with the desired rate.

2. The OS can be late to wake up the process after a sleep. If not compensated for, this oversleeping time will reduce
the achieved rate.

3. Naïvely catching up from oversleeping by transmitting as fast as possible can lead to a large burst of back-to-back
packets that overwhelm the receiver.

The first point is addressed by sending several packets at a time without sleeping in between. Apart from reducing the
number of sleeps, this also allows multiple packets to be batched together for transmission with APIs such as send-
mmsg(). This is the burst_size parameter in StreamConfig.
The remaining points are handled by using two rates: the “standard” rate that the user requested, and a “catch-up” rate
that is used when it is necessary to catch up after oversleeping, and which is specified indirectly via the burst_rate_ratio
parameter in StreamConfig.

Note: While both parameters have “burst” in the name, they control two different bursting mechanisms: sending small
amounts with no sleeping at all, and sending larger amounts at the burst rate to catch up on oversleeping.

The two rates are managed by keeping two lower bounds for sending the next burst. For the standard rate, the time is
incremented after each burst according only to the size of the burst, without considering actual transmission times. For
the burst rate, the time for the next burst is the time that the current burst was actually sent plus the size over the rate.

120 Chapter 9. Developer documentation

spead2, Release 4.3.1

The above all assumes that the producer always has some data to send, but in some applications the sender may go dormant
for some extended time. When it starts again, a naïve implementation might interpret this dormant period as oversleeping
and switch to the burst rate to catch up. To avoid this, the rate mechanism handles this case specially by adjusting the
standard rate lower bound such that no catching up is required.

State machine

The writer is a state machine which the following states:
• New: freshly constructed. Nothing happens in this state, because the associated stream has not yet been set.
• Active: The writer is either executing code or has made internal arrangements to be woken up (for example, it has
asynchronously sent some packets and is waiting for the completion handler).

• Sleeping: The rate limiter is sleeping.
• Empty: All the queued heaps have been sent, and we are waiting for the user to provide more.

Active

New

Sleeping Empty

start()

SUCCESS

EMPTYSLEEP

heap addedtimer expires

Fig. 1: State transitions

The transitions from Active are labelled by the return value from spead2::send::writer::get_packet().
Transitions back to Active are achieved by calling spead2::send::writer::wakeup().

Time precision

Even though sleeping is not very precise, it has turned out to be necessary to do time arithmetic with very high (sub-
nanosecond) precision. The reason is that standard rate lower bound will typically be incremented by the same amount
for each burst, and hence any rounding error will be in the same direction each time. As an example, suppose the desired
rate is 40 Gb/s, and each burst is 65536 bytes. Then the time between bursts should be 13107.2 ns. If arithmetic were
done at nanosecond precision, that would round to 13107 ns each time, giving an actual rate of 40.0006 Gb/s. The higher
the rate or the smaller the burst, the greater the relative error.
This is handled by representing absolute times as the sum of two parts: a time_point of the timer class (typically
nanosecond resolution), and an additional correction in double precision (always between 0 and 1 units of time_point).
When actually sleeping, only the first (“coarse”) part is used, since that is all the precision that can be given to the timer.
The correction term accumulates the rounding errors so that they do not get lost. Keeping the correction in the interval
[0, 1) simplifies comparison of precise times.

9.2. Design 121

spead2, Release 4.3.1

9.2.6 Generic segmentation offload

Linux supports a mechanism called generic segmentation offload (GSO) to reduce packet overheads when transmitting
UDP data through the kernel networking stack. A good overview can be found on Cloudflare’s blog, but the basic idea is
this:

1. Userspace concatenates multiple smaller packets into one mega-packet for submission to the kernel.
2. Most of the networking stack operates on the mega-packet.
3. As late as possible (and possibly on the NIC) the mega-packet is re-segmented into the original packets.

The re-segmentation uses a user-supplied parameter (socket option) indicating the size of the original packets. This
imposes a limitation that the original packets were all the same size, except perhaps for the last one in the mega-packet.
The support for this in spead2 is dependent on the sendmmsg(2) support. While there is no fundamental reason GSO
can’t be used without sendmmsg(2), supporting it would complicate the code significantly, and GSO is a much more
recent feature so it is unlikely that this combination would ever be needed.
Run-time detection of support is unfortunately rather complicated. The simple part is that an older kernel will not support
the socket option. If that occurs, we simply disable GSO for the stream. A more tricky problem is that actually sending
the message may fail for several reasons:

• Fragmentation doesn’t seem to be supported, so if the segment size is bigger than the MTU, it will fail.
• If hardware checksumming is disabled (or presumably if it is not supported), it will fail.

To cope with this complication, a state machine is used. It has four possible states:
• active: the socket option is set to a positive value
• inactive: the socket option is set to zero, but we may still transition to active
• probe: the last send in active state failed; the socket option is now set to zero and we’re retrying
• disabled: the socket option is set to zero, and we will never try to set it again.

If send fails while in state active, we switch to state probe and try again (without GSO). If that succeeds, we conclude that
GSO is non-functional for this stream and permanently go to disabled. If that also fails, we conclude that the problem
was unrelated to GSO and return to inactive.

9.2.7 Linking to ibverbs

The Python wheels for spead2 support ibverbs. But what happens if the ibverbs library isn’t installed on the user’s ma-
chine? While for pcap we simply bundle a copy of the library into the wheel, this is problematic for ibverbs: it uses
configuration files in /etc/libibverbs.d to configure drivers, which are themselves contained in other shared li-
braries. At best, one would end up with a mix of code from the wheel and from the operating system, which could easily
lead to compatibility problems.
Instead, the ibverbs libraries (libibverbs.so, librdmacm.so and libmlx5.so) are loaded dynamically at
runtime with dlopen(3). If the library is not found, the corresponding functionality in spead2 is disabled.
Unfortunately, dynamic loading is not easy to use: dlsym(3) returns a raw pointer with no type information. One needs
to check for errors and cast the pointer to the proper type before it can be invoked. This leads to a lot of boilerplate code,
which in spead2 is generated at build time by gen/gen_loader.py for each of the libraries.
The process starts with the signatures for the functions that are to be written, which are parsed using pycparser. The actual
header files for these functions are not suitable for pycparser (it only handles standard C99), so the script has embedded
declarations for all the functions we wish to wrap. It then emits a header file and a source file, both generated from
templates using jinja2. It generates a private initialisation function that opens the library (if possible) and extracts the
symbols from it. It also generates the following for each function:

122 Chapter 9. Developer documentation

https://blog.cloudflare.com/accelerating-udp-packet-transmission-for-quic/
https://man7.org/linux/man-pages/man3/dlopen.3.html
https://man7.org/linux/man-pages/man3/dlsym.3.html
https://github.com/eliben/pycparser
https://jinja.palletsprojects.com/

spead2, Release 4.3.1

• A declaration of the function pointer. It has the same name as the original function, but is in thespead2 namespace
to prevent symbol conflicts.

• An implementation that calls the initialisation function (using std::call_once(), to avoid initialising multiple
times), then calls through the function pointer. The function pointer is defined to initially point to this implemen-
tation, so that the first use of the function pointer does the initialisation.

• A “stub” implementation. If there was a problem loading the library, the function pointers are all changed to point
to the stub implementations, which when called will re-throw the exception that occurred during initialisation.

Additionally, some functions are optional: they were added in later versions of the wrapped library, and spead2 has
fallback code that can be used if the function is not available. For those, the generator additionally creates:

• A “missing” implementation, which throws a std::system_error with error code EOPNOTSUPP. If the
function is not found during initialisation, the function pointer is set to point at this implementation.

• A (public) function which has the same name but prefixed with has_, which returns a boolean to indicate whether
the function is present.

Changing a function pointer during initialisation ensures that only the first call incurs any overheads from the wrapping;
after that, calls are made directly to the target function.

9.2. Design 123

spead2, Release 4.3.1

124 Chapter 9. Developer documentation

CHAPTER

TEN

CHANGELOG

4.3.1

• Switch from netifaces to netifaces2 for testing.
• Update coverallsapp/github-action to v2.2.3.
• Fix the type annotation for spead2.recv.StreamConfig to allow explicit_start to be passed as a constructor
argument.

4.3.0

• Add ability to override the transmission rate for individual heaps.
• Fix missing type annotation on the substream_index argument to send_heap().

4.2.0

• Significantly speed up transmission when using the Linux kernel networking stack, by using generic segmentation
offload.

• Speed up transmission for small packets (20% in some cases).
• Make async_send_heap() and async_send_heaps() accept completion tokens. This allows for code
like stream.async_send_heap(heap, boost::asio::use_future);

• Add C++ support to iterate over ring_stream and ringbuffer using a range-based for loop.
• Add support for the prefer_huge argument to the MmapAllocator constructor in Python.
• Make the allocator argument to MemoryPool optional in Python.
• Allow indexing a HeapReferenceList with a slice to create a new HeapReferenceList with a subset of
the heaps.

• Add ringbuffer to the C++ documentation.
• Eliminate use of the deprecated boost::asio::null_buffers.
• Update Boost version in wheels to 1.84.
• Update rdma-core version in manylinux wheels to 49.0.
• Make various updates to the Github Actions infrastructure.

125

spead2, Release 4.3.1

4.1.1

• Add AVX and AVX-512 implementations for non-temporal memory copy. While this is transparent to the API,
the Meson option names have changed to allow specific instruction sets to be disabled if necessary.

4.1.0

• Introduce explicit start for receive streams.

4.0.2

Note that an oversight lead to some of the changes between 4.0.0b1 and 4.0.0 being omitted from 4.0.1. They are restored
in 4.0.2.

• Fix type annotations for spead2.send.UdpStream and spead2.send.asyncio.UdpStream.
• Add more documentation for developers.
• Remove an old Makefile.am that should have been removed in 4.0.0.
• Remove mocking of spead2 in readthedocs build.
• Change .. code:: to .. code-block:: in documentation.
• Simplify the implementation of thread_pool_wrapper and buffer_reader in Python binding code.
• Directly use pointer-to-member-functions in Python binding code.
• Test against numpy 1.26.0 (instead of 1.26.0rc1) on Python 3.12.

4.0.1

• Restore dependency on numpy, which was accidentally removed in 4.0.0.
• Change the test_numba extra to test-numba to normalise it in accordance with PEP 685.

4.0.0

This release makes major changes to the build system, and removes deprecated features. See Migrating to version 4 for
more detailed information about upgrading and the deprecation removals.
Most of the changes are listed under 4.0.0b1 below. Since then, the following changes have been made:

• Improve detection of gdrcopy by using the CUDA compiler to compile the test code.
• Remove ninja from build-system.requires. If you have ninja installed on the system, that will be used
for the Python install rather than downloading it.

• Make miscellaneous improvements to the build system.
• Remove an unused file (.ci/ccache-path.sh).
• Work around a pytest bug to prevent tests running out of file descriptors (particularly on MacOS, which has a lower
default limit).

• Add wheels for MacOS (Intel and Apple Silicon).
• Document that Meson must be at least 1.2.
• Make source paths in .debug files more usable (relative to 4.0.0b1).

126 Chapter 10. Changelog

https://peps.python.org/pep-0685/

spead2, Release 4.3.1

• Remove .pyi file entries for the functionality removed in 4.0.

4.0.0b1

This release makes major changes to the build system, and removes deprecated features. See Migrating to version 4 for
more detailed information about upgrading and the deprecation removals.

• Replace the build system with Meson.
• Update the C++ code to use C++17.
• No longer link against boost_system, and require Boost 1.69+.
• Remove generated code from release tarballs; some Python packages are now required at build time to build the
C++ bindings.

• Fix an uninitialised variable that could cause a segmentation fault when using TCP to send and the initial connection
failed.

• Fix a large number of compiler warnings that showed up after switching build systems (mainly related to unused
function parameters and signed/unsigned comparisons).

• Fix the debug logging option so logging from inline functions in headers will also do debug logging without the user
needing to make preprocessor defines.

• Fix spead2_bench.py so that it functions when ibverbs support is not compiled in.
• Remove the need for boost_program_options to be installed to be able to install the Python bindings from source.
• Produce binary wheels for aarch64.
• Produce wheels for Python 3.12.
• Make numba and scipy optional for running tests (some tests will be skipped if they are not present).
• Update the libpcap embedded in the wheels to 1.10.4.
• Update the Boost version used to build wheels to 1.83.
• Update the rdma-core version used to build wheels to 47.0.
• Update the pybind11 build dependency to 2.11.1.
• Replace flake8 with ruff for linting.
• Remove the spead2/common_bind.h header, which was unused.
• Remove the SPEAD2_DEPRECATED macro.
• Remove build-time dependencies from requirements.txt.
• Update the .pyi files to use more modern syntax e.g., PEP 585, PEP 604, PEP 613.
• Replace references to nv_peer_mem with nvidia-peermem.
• Increase TTL of gpudirect_example to 4.

127

https://mesonbuild.com
https://beta.ruff.rs/docs/
https://peps.python.org/pep-0585/
https://peps.python.org/pep-0604/
https://peps.python.org/pep-0613/

spead2, Release 4.3.1

3.13.0

• Reformat the Python codebase using black and isort.
• Add pre-commit configuration.
• On i386, check for SSE2 support at runtime rather than configure time.
• Free readers only when the stream is destroyed. This fixes a bug that caused the Python API to be accessed without
the GIL when using add_buffer_reader().

• Improve unit tests by explicitly closing TCP sockets, to avoid ResourceWarning when testing with python
-X dev.

• Remove wheel from build-system.requires.

3.12.0

• Add support for Chunking stream groups to assemble chunks in parallel.
• Simplify the way receive streams shut down. Users should not notice any change, but custom reader implementa-
tions will need to be updated.

• Update test_async_flush() and test_async_flush_fail() to keep handles to async tasks, to pre-
vent them being garbage collected too early.

• Fix a bug where copying a spead2::recv::stream_config would not deep copy the names of custom
statistics, and so any statistics added to the copy would also affect the original, and there were also potential race
conditions if a stream config was modified while holding stream statistics.

• Fix a bug (caused by the bug above) where passing a spead2::recv::stream_config to construct a
spead2::recv::chunk_stream would modify the config. Passing the same config to construct two chunk
streams would fail with an error.

• Fix the type annotation for the ChunkRingStream constructor: the parameter name for chunk_stream_config
was incorrect.

• Fix universal binary builds on MacOS (this was preventing Python 3.11 builds from succeeding).
• Fix spead2_bench.py, which has failed to run at all for some time (possibly since 3.0).
• Avoid including Boost dynamic symbols in the Python module (helps reduce binary size).
• Strip static symbols out of the Python wheels (reduces size).
• Build Python wheels with link-time optimisation (small performance improvement).
• Python 3.8 is now the minimum version.

3.11.1

• Fix a packaging issue that meant automake and similar tools were required to compile (since 3.10).

128 Chapter 10. Changelog

https://black.readthedocs.io/en/stable/
https://pycqa.github.io/isort/
https://pre-commit.com/
https://docs.python.org/3/library/exceptions.html#ResourceWarning

spead2, Release 4.3.1

3.11.0

• The chunking receiver is no longer experimental.
• The place callback for the chunking receiver can now provide extra data to be written to the chunk.

3.10.0

• Support pcap dumps that use the SLL format.
• Support a user-defined filter in the pcap file reader.
• Add experimental support for building a shared library.
• Assorted documentation updates

– The SPEAD specification is now stored in the repository (the upstream link is broken).
– Build PDFs on readthedocs.
– Update the tuning documentation.

3.9.1

• Fix an asyncio.InvalidStateError that occurs when the future returned by async_send_heap()
or async_send_heaps() is cancelled before it completes.

3.9.0

• Added substreams to spead2.recv.StreamConfig to improve handling of interleaved heaps frommul-
tiple senders.

• Add libdivide to the dependencies.

3.8.0

• Drop support for Python 3.6, which has reached end-of-life.
• Test against Python 3.10 in Github Actions.
• Improve the accuracy of the rate limiter. Previously it could send slightly too fast due to rounding sleep times to
whole numbers of nanoseconds.

• Eliminate dependence on distutils, which is deprecated in Python 3.10 (#175).

3.7.0

• Add spead2.send.GroupMode.SERIAL.
• Add spead2.send.HeapReferenceList.
• Speed up C++ unit tests.
• Fix some spurious output in the statistics report from spead2_recv.py (introduced in 3.5.0).
• Fix the help message from spead2_net_raw to have the right name for the program.
• Update to latest version of pybind11.

129

https://docs.python.org/3/library/asyncio-exceptions.html#asyncio.InvalidStateError

spead2, Release 4.3.1

3.6.0

• Allow a ringbuffer to be stopped only once the last producer has indicated completion, rather than the first.
• Change ChunkRingStream so that stops received from the network only shut down a shared ringbuffer once all
the streams have stopped. A user call to stop will still stop the ringbuffer immediately.

• ChunkRingbuffer.stop() now returns a boolean to indicate whether this is the first time the ringbuffer was
stopped.

3.5.0

• Add support for Custom statistics.
• Change the allocate and ready callbacks on spead2::recv::chunk_stream to take a pointer to the batch
statistics. This is a backwards-incompatible change (keep in mind that chunking receive is still experimental).
Code that uses spead2::recv::chunk_ring_stream is unaffected.

• Change the design of deleters for spead2::memory_allocator. Code that calls get_user or
get_deleter on a pointer allocated by spead2may now get a nullptr back. Code that uses a custommemory
allocator and that calls these functions on pointers allocated by that allocator should continue to work.

• Allow a ready callback to be used together with spead2::recv::chunk_ring_stream, to finish prepara-
tion of a chunk before it pushed to the ringbuffer.

• In Python, avoid copying immediate items when given as 0-d arrays with dtype >u8. This makes it practical to
pre-define heaps and later update their values rather than creating new heap objects.

• Make spead2.send.Stream, spead2.send.SyncStream and spead2.send.asyncio.
AsyncStream available for type annotations.

• Fix an occasional segfault when stopping a spead2.recv.ChunkRingStream.

3.4.0

• Add Chunking receiver.
• Add missing spead2.recv.Stream.add_udp_pcap_file_reader() to .pyi file.
• Add spead2.InprocQueue.add_packet().
• Prevent conversions from None to spead2.ThreadPool.

3.3.2

• spead2::recv::mem_reader now stops the stream gracefully, allowing incomplete heaps to be flushed.

130 Chapter 10. Changelog

spead2, Release 4.3.1

3.3.1

• Convert spead2_net_raw to a C++ file so that it gets the same compiler flags as everything else.
• Migrate from Travis CI to Github Actions.
• Fix some warnings generated by Clang.
• Fix some test failures with PyPy.

3.3.0

• Add spead2_net_raw tool.
• Eliminate some compiler warnings about unused parameters.
• Update build process to use pypa-build and setuptools_scm.
• Update to pybind11 2.6.2.

3.2.2

• Use python3 instead of python to invoke Python (so that it works even on systems where python is absent
or is Python 2).

• Work around a bug that prevented compilation on Boost 1.76.

3.2.1

• Update type annotations to use numpy.typing.DTypeLike for dtype arguments, to prevent false warnings
from mypy.

3.2.0

• Add spead2::recv::heap::get_payload() to allow the payload pointer to be retrieved from a com-
plete heap.

• Make the ibverbs sender compatible with PeerDirect.
• Add examples programs showing integration with gdrcopy and PeerDirect.
• Always use SFENCE at end of memcpy_nontemporal() so that it is appropriate for use with gdrcopy.
• Fix a memory leak when receiving with ibverbs.

3.1.3

• Fix installation of header files: some newer headers were not being installed, breaking builds for C++ projects.

131

https://docs.mellanox.com/pages/viewpage.action?pageId=32413288
https://github.com/NVIDIA/gdrcopy
https://docs.mellanox.com/pages/viewpage.action?pageId=32413288
https://github.com/NVIDIA/gdrcopy

spead2, Release 4.3.1

3.1.2

• Fix a use-after-free bug that could cause a crash when freeing a send stream.
• Improve send performance by eliminating a memory allocation from packet generation.

3.1.1

• Set IBV_ACCESS_RELAXED_ORDERING flag on ibverbs memory regions. This reduces packet loss in some
circumstances (observed on Epyc 2 system with lots of memory traffic).

3.1.0

• Add send_heaps() and async_send_heaps() to send groups of heaps with interleaved packets.
• Upgrade to pybind11 2.6.0, which contains a workaround for a bug in CPython 3.9.0.

3.0.1

• Bring the type stubs up to date.
• Fix a typo in the documentation.

3.0.0

Version 3.0 contains a number of breaking API changes. For information on updating your existing code, refer to Mi-
grating to version 3.
The ibverbs acceleration has been substantially modified to use a newer version of rdma-core. It will no longer compile
against versions of MLNX-OFED prior to 5.0. Compiled code (such as Python wheels) will still run against old versions
of MLNX-OFED, but extension features such as multi-packet receive queues and packet timestamps will not work, and
nor will mcdump. It is recommended that if you are using ibverbs acceleration with older MLNX-OFED drivers that you
stick with spead2 2.x until you’re able to upgrade the drivers and spead2 simultaneously.

• Support multiple “substreams” in a send stream (see Substreams).
• Reduce overhead for dealing with incomplete heaps.
• Allow ibverbs senders to register memory regions for zero-copy transmission.
• Add C++ preprocessor defines for the version number.
• Use IP/UDP checksum offloading for sending with ibverbs (improves performance and also adds UDP checksum
which is otherwise omitted).

• Add wheels for Python 3.9.
• Drop support for Python 3.5, which is end-of-life.
• Change code examples to use standard SPEAD rather than PySPEAD bug compatibility.
• Change spead2::send::streambuf_stream so that when the streambuf only partially writes a packet,
the partial byte count is included in the count returned to the callback.

• spead2::send::stream::flush() now only blocks until the previously enqueued heaps are completed.
Another thread that keeps adding heaps would previously have prevented it from returning.

• Partially rewrite the sending infrastructure, resulting in performance improvements, in some cases of over 10%.

132 Chapter 10. Changelog

spead2, Release 4.3.1

• Setting a buffer size of 0 for a UdpIbvStream now uses the default buffer size, instead of a 1-packet buffer.
• Fix spead2_bench.py ignoring the --send-affinity option.
• Add --verify option to spead2_send and spead2_recv to aid in testing the code. To support this,
spead2_send was modified so that each in-flight heap uses different memory, which may reduce performance
(due to less cache re-use) even when the option is not given.

• Miscellaneous performance improvements.
• Support hardware send rate limiting when using ibverbs (disabled by default).
• Discover libibverbs and pcap using pkg-config where possible.
• Make configure print out the configuration that will be compiled.
• Update the Python wheels to use manylinux2014. This uses a newer compiler (potentially giving better perfor-
mance) and supports sendmmsg().

• A number of deprecated functions have been removed.
• Avoid ibverbs code creating a send queue for receiver or vice versa.
• Rename slave option to spead2_bench to agent.

Compared to 3.0.0b2 there is a critical bug fix for a race condition in the send code.

3.0.0b2

Version 3.0 contains a number of breaking API changes. For information on updating your existing code, refer to Mi-
grating to version 3.
Other changes:

• Support multiple “substreams” in a send stream (see Substreams).
• Reduce overhead for dealing with incomplete heaps.
• Allow ibverbs senders to register memory regions for zero-copy transmission.
• Add C++ preprocessor defines for the version number.
• Use IP/UDP checksum offloading for sending with ibverbs (improves performance and also adds UDP checksum
which is otherwise omitted).

• Drop support for Python 3.5, which is end-of-life.
• Change code examples to use standard SPEAD rather than PySPEAD bug compatibility.
• Change spead2::send::streambuf_stream so that when the streambuf only partially writes a packet,
the partial byte count is included in the count returned to the callback.

• spead2::send::stream::flush() now only blocks until the previously enqueued heaps are completed.
Another thread that keeps adding heaps would previously have prevented it from returning.

• Partially rewrite the sending infrastructure, resulting in performance improvements, in some cases of over 10%.
• Setting a buffer size of 0 for a UdpIbvStream now uses the default buffer size, instead of a 1-packet buffer.
• Fix spead2_bench.py ignoring the --send-affinity option.
• The hardware rate limiting introduced in 3.0.0b1 is now disabled by default, as it proved to be significantly less
accurate than the software rate limiter in some cases. The interface has also been changed from a boolean to an
enum (with the default being AUTO) so that it can later be re-enabled under circumstances where it is known to
work well, while still allowing it to be explicitly enabled or disabled.

133

spead2, Release 4.3.1

• Add --verify option to spead2_send and spead2_recv to aid in testing the code. To support this,
spead2_send was modified so that each in-flight heap uses different memory, which may reduce performance
(due to less cache re-use) even when the option is not given.

• Miscellaneous performance improvements.
Additionally, refer to the changes for 3.0.0b1 below.

3.0.0b1

The ibverbs acceleration has been substantially modified to use a newer version of rdma-core. It will no longer compile
against versions of MLNX-OFED prior to 5.0. Compiled code (such as Python wheels) will still run against old versions
of MLNX-OFED, but extension features such as multi-packet receive queues and packet timestamps will not work. It is
recommended that if you are using ibverbs acceleration with older MLNX-OFED drivers that you stick with spead2 2.x
until you’re able to upgrade the drivers and spead2 simultaneously.
Other changes:

• Support hardware send rate limiting when using ibverbs.
• Discover libibverbs and pcap using pkg-config where possible.
• Make configure print out the configuration that will be compiled.
• Update the Python wheels to use manylinux2014. This uses a newer compiler (potentially giving better perfor-
mance) and supports sendmmsg().

• Add wheels for Python 3.9.
• A number of deprecated functions have been removed.
• Avoid ibverbs code creating a send queue for receiver or vice versa.
• Rename slave option to spead2_bench to agent.

2.1.2

• Make verbs acceleration work when run against MLNX OFED 5.x, including with Python wheels. Note that it will
not use multi-packet receive queues, so receive performance may still be better on MLNX OFED 4.9.

2.1.1

• Update pybind to 2.5.0.
• Fix compilation against latest rdma-core.
• Some documentation cleanup.

134 Chapter 10. Changelog

spead2, Release 4.3.1

2.1.0

• Support unicast receive with ibverbs acceleration (including in mcdump).
• Fix spead2_recv listening only on loopback when given just a port number.
• Support unicast addresses in a few APIs that previously only accepted multicast addresses; in most cases the unicast
address must match the interface address.

• Add missing <map> include to <spead2/recv_heap.h>.
• Show the values of immediate items in spead2_recv.
• Fix occasional crash when using thread pool with more than one thread together with ibverbs.
• Fix bug in mcdump causing it to hang if the arguments couldn’t be parsed (only happened when capturing to file).
• Fix spead2_recv reporting statistics that may miss out the last batch of packets.

2.0.2

• Log warnings on some internal errors (that hopefully never happen).
• Include wheels for Python 3.8.
• Build debug symbols for binary wheels (in a separate tarball on Github).

2.0.1

• Fix race condition in TCP receiver (#78).
• Update vendored pybind11 to 2.4.2.

2.0.0

• Drop support for Python 2.
• Drop support for Python 3.4.
• Drop support for trollius.
• Drop support for netmap.
• Avoid creating some cyclic references. These were not memory leaks, but prevented CPython from freeing objects
as soon as it might have.

• Update vendored pybind11 to 2.4.1.

1.14.0

• Add new_order argument to spead2.ItemGroup.update().
• Improved unit tests.

135

spead2, Release 4.3.1

1.13.1

• Raise ValueError on a dtype that has zero itemsize (#37).
• Change exception when dtype has embedded objects from TypeError to ValueError for consistency
• Remove duplicated socket handle in UDP receiver (#67).
• Make max_poll argument to spead2.send.UdpIbvStream actually have an effect (#55).
• Correctly report EOF errors in spead2::send::streambuf_stream.
• Wrap implicitly computed heap cnts to the number of available bits (#3). Previously behaviour was undefined.
• Some header files were not installed by make install (#72).

1.13.0

• Significant performance improvements to send code (in some cases an order of magnitude improvement).
• Add --max-heap option to spead2_send and spead2_send.py to control the depth of the send queue.
• Change the meaning of the --heaps option in spead2_bench and spead2_bench.py: it now also controls
the depth of the sending queue.

• Fix a bug in send rate limiting that could allow the target rate to be exceeded under some conditions.
• Remove --threads option from C++ spead2_send, as the new optimised implementation isn’t thread-safe.
• Disable the test_numpy_large test on macOS, which was causing frequent failures on TravisCI due to
dropped packets.

1.12.0

• Provide manylinux2010 wheels.
• Dynamically link to libibverbs and librdmacm on demand. This allows binaries (particularly wheels) to support
verbs acceleration but still work on systems without these libraries installed.

• Support for Boost 1.70. Unfortunately Boost 1.70 removes the ability to query the io_service from a socket, so
constructors that take a socket but no io_service are omitted when compiling with Boost 1.70 or newer.

• Fix some compiler warnings from GCC 8.

1.11.4

• Rework the locking internals of spead2::recv::stream so that a full ringbuffer doesn’t block
new readers from being added. This changes the interfaces between spead2::recv::reader and
spead2::recv::stream_base, but since users generally don’t deal with that interface the major version
hasn’t been incremented.

• Fix a spurious log message if an in-process receiver is manually stopped.
• Fix an intermittent unit test failure due to timing.

136 Chapter 10. Changelog

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError

spead2, Release 4.3.1

1.11.3

• Undo the optimisation of using a single flow steering rule to cover multiple multicast groups (see #11).

1.11.2

• Fix -c option to mcdump.
• Fix a missing #include that could be exposed by including headers in a particular order.
• Make spead2::recv::heap’s move constructor and move assignment operator noexcept.
• Add a long_description to the Python metadata.

1.11.1

• Update type stubs for new features in 1.11.0.

1.11.0

• Add spead2.recv.Stream.allow_unsized_heaps to support rejecting packets without a heap length.
• Add extended custom memcpy support (C++ only) for scattering data from packets.

1.10.1

• Use ibverbs multi-packet receive queues automatically when available (supported by mlx5 driver).
• Automatically reduce buffer size for verbs receiver to match hardware limits (fixed #64).
• Gracefully handle Ctrl-C in spead2_recv and print statistics.
• Add typing stub files to assist checking with Mypy.
• Give a name to the argument of spead2.recv.Stream.add_inproc_reader().
• Fix Python binding for one of the UDP reader overloads that takes an existing socket. This was a deprecated
overload.

• Add a unit test for ibverbs support. It’s not run by default because it needs specific hardware.

1.10.0

• Accelerate per-packet processing, particularly when max_heaps is large.
• Accelerate per-heap processing, particularly for heaps with few items.
• Add a fast path for single-packet heaps.
• Improve performance of the pcap reader by working on batches of packets.
• Provide access to ringbuffer size and capacity for diagnostics.
• Add extra fields to spead2.recv.StreamStats.
• Add support for pcap files to the C++ version of spead2_recv.
• Update the vendored pybind11 to 2.2.4 (fixes some warnings on Python 3.7).

137

spead2, Release 4.3.1

• Deprecate netmap support in documentation.

1.9.2

• autotools are no longer required to install the C++ build (when installing from a release tarball).

1.9.1

• Make spead2.recv.asyncio.Stream.get() always yield to the event loop even if there is a heap ready.
• Avoid spead2.recv.asyncio.Stream.get() holding onto a reference to the heap (via a future) for
longer than necessary.

1.9.0

• Add support for TCP/IP (contributed by Rodrigo Tobar).
• Changed command-line options for spead2_send/spead2_recv: --ibv and --netmap are now boolean
flags, and the interface address is set with --bind.

• Added option to specify interface address for spead2::send::udp_stream even when not using the multi-
cast constructors.

• Constructors that take an existing socket now expect the user to set all socket options. The old versions that take
a socket buffer size are deprecated. Note that the behaviour of spead2::send::udp_stream with a socket
has changed: if no buffer size is given, it is left at the OS default, rather than applying the spead2 default.

• Fix a bug causing undefined behaviour if a send class is destroyed while there is still data in flight.

Version 1.8.0

• Add In-process transport
• Fix unit testing on Python 3.7
• Add spead2::send::heap::get_item()
• Support asynchronous iterator protocol for spead2.recv.asyncio.Stream (in Python 3.5+).

Version 1.7.2

• Add progress reports to mcdump
• Add ability to pass - as filename to mcdump to skip file writing.
• Add --count option to mcdump

138 Chapter 10. Changelog

spead2, Release 4.3.1

Version 1.7.1

There are no code changes, but this release fixes a packaging error in 1.7.0 that prevented the asyncio integration from
being included.

Version 1.7.0

• Support for pcap files. Files passed to spead2_recv.py are now assumed to be pcap files, rather than raw
concatenated packets.

• Only log warnings about the ringbuffer being full if at least one stream reader is lossy (indicated by a new virtual
member function in spead2::recv::Reader).

Version 1.6.0

• Change spead2_send.py and spead2_send to interpret the --rate option as Gb/s and not Gib/s.
• Change send rate limiting to bound the rate at which we catch up if we fall behind. This is controlled by a new
attribute of StreamConfig.

• Add report at end of spead2_send.py and spead2_send on the actual number of bytes sent and achieved
rate.

• Fix a race condition where the stream statistics might only be updated after the stream ended (which lead to unit
test failures in some cases).

Version 1.5.2

• Report statistics when spead2_recv.py is stopped by SIGINT.
• Add –ttl option to spead2_send.py and spead2_send.

Version 1.5.1

• Explicitly set UDP checksum to 0 in IBV sender, instead of leaving arbitrary values.
• Improved documentation of asyncio support.

Version 1.5.0

• Support for asyncio in Python 3. For each trollius module there is now an equivalent asyncio module. The installed
utilities use asyncio on Python 3.4+.

• Add spead2.recv.Stream.stop_on_stop_item to allow a stream to keep receiving after a stop item
is received.

• Switch shutdown code to use atexit instead of a capsule destructor, to support PyPy.
• Test PyPy support with Travis.

139

spead2, Release 4.3.1

Version 1.4.0

• Remove --bind option to spead2_recv.py and spead2_recv. Instead, use host:port as the source.
This allows subscribing to multiple multicast groups.

• Improved access to information about incomplete heaps (spead2.recv.IncompleteHeap type).
• Add MemoryPool.warn_on_empty control.
• Add warning when a stream ringbuffer is full.
• Add statistics to streams.
• Fix spead2_send.py to send a stop heap when using --heaps. It was acccidentally broken in 1.2.0.
• Add support for packet timestamping in mcdump.
• Return the previous logging function from spead2::set_log_function().
• Make Python logging from C++ code asynchronous, to avoid blocking the thread pool on the GIL.
• Upgrade to pybind11 2.2.1 internally.
• Some fixes for PyPy support.

Version 1.3.2

• Fix segfault in shutdown for spead2_recv.py (fixes #56).
• Fix for TypeError in Python 3.6 when reading fields that aren’t aligned to byte boundaries.
• Include binary wheels in releases.

Version 1.3.1

• Fix multi-endpoint form of spead2.recv.Stream.add_udp_ibv_reader().

Version 1.3.0

• Rewrite the Python wrapping using pybind11. This should not cause any compatibility problems, unless you’re
using the spead2/py_*.h headers.

• Allow passing std::shared_ptr to constructors that take a thread pool, with the constructed object holding a
reference.

• Prevent constructing a spead2.recv.Stream with max_heaps=0 (fixes #54).

Version 1.2.2

• Fix rate limiting causing longer sleeps than necessary (fixes #53).

140 Chapter 10. Changelog

https://docs.python.org/3/library/exceptions.html#TypeError

spead2, Release 4.3.1

Version 1.2.1

• Disable LTO by default and require the user to opt in, because even if the compiler supports it, linking can still fail
(fixes #51).

Version 1.2.0

• Support multiple endpoints for one udp_ibv_reader (fixes #48).
• Fix compilation on OS X 10.9 (fixes #49)
• Fix spead2::ringbuffer<T>::emplace() and spead2::ringbuffer<T>::try_emplace()
• Improved error messages when passing invalid arguments to mcdump

Version 1.1.2

• Only log descriptor replacement if it actually replaces an existing name or ID (regression in 1.1.1).
• Fix build on ARM where compiling against asio requires linking against pthread.
• Updated and expanded performance tuning guide.

Version 1.1.1

• Report the item name in exception for “too few elements for shape” errors
• Overhaul of rules for handling item descriptors that change the name or ID of an item. This prevents stale items from
hanging around when the sender changes the name of an item but keeps the same ID, which can cause unrelated
errors on the receiver if the shape also changes.

Version 1.1.0

• Allow heap cnt to be set explicitly by sender, and the automatic heap cnt sequence to be specified as a start value
and step.

Version 1.0.1

• Fix exceptions to include more information about the source of the failure
• Add mcdump tool

Version 1.0.0

• The C++ API installation has been changed to use autoconf and automake. As a result, it is possible to run make
install and get the static library, headers, and tools installed.

• The directory structure has changed. The spead2_* tools are now installed, example code is now in the exam-
ples directory, and the headers have moved to include/spead2.

• Add support for sending data using libibverbs API (previously only supported for receiving)
• Fix async_send_heap (in Python) to return a future instead of being a coroutine: this fixes a problem with undefined
ordering in the trollius example.

141

spead2, Release 4.3.1

• Made sending streams polymorphic, with abstract base class spead2::send::stream, to simplify writing
generic code that can operate on any type of stream. This will break code that depended on the old template class
of the same name, which has been renamed to spead2::send::stream_impl.

• Add --memcpy-nt to spead2_recv.py and spead2_bench.py
• Multicast support in spead2_bench.py and spead2_bench
• Changes to the algorithm for spead2_bench.py and spead2_bench: it now starts by computing the maxi-
mum send speed, and then either reporting that this is the limiting factor, or using it to start the binary search for
the receive speed. It is also stricter about lost heaps.

• Some internal refactoring of code for dealing with raw packets, so that it is shared between the netmap and ibv
readers.

• Report function name that failed in semaphore system_error exceptions.
• Make the unit tests pass on OS X (now tested on travis-ci.org)

Version 0.10.4

• Refactor some of the Boost.Python glue code tomake it possible to reuse parts of it in writing new Python extensions
that use the C++ spead2 API.

Version 0.10.3

• Suppress “operation aborted” warnings from UDP reader when using the API to stop a stream (introduced in
0.10.0).

• Improved elimination of duplicate item pointers, removing them as they’re received rather than when freezing a
live heap (fixes #46).

• Use hex for reporting item IDs in log messages
• Fix reading from closed file descriptor after stream.stop() (fixes #42)
• Fix segmentation fault when using ibverbs but trying to bind to a non-RDMA device network interface (fixes #45)

Version 0.10.2

• Fix a performance problem when a heap contains many packets and every packet contains item pointers. The
performance was quadratic instead of linear.

Version 0.10.1

• Fixed a bug in registering add_udp_ibv_reader in Python, which broke spead2_recv.py, and possibly any
other code using this API.

• Fixed spead2_recv.py ignoring --ibv-max-poll option

142 Chapter 10. Changelog

spead2, Release 4.3.1

Version 0.10.0

• Added support for libibverbs for improved performance in both Python and C++.
• Avoid per-packet shared_ptr reference counting, accidentally introduced in 0.9.0, which caused a small perfor-
mance regression. This is unfortunately a breaking change to the interface for implementing custom memory
allocators.

Version 0.9.1

• Fix using a MemoryPool with a thread pool and low water mark (regression in 0.9.0).

Version 0.9.0

• Add support for custom memory allocators.

Version 0.8.2

• Ensure correct operation when loop=None is passed explicitly to trollius stream constructors, for consistency with
functions that have it as a keyword parameter.

Version 0.8.1

• Suppress recvmmsg: resource temporarily unavailable warnings (fixes #43)

Version 0.8.0

• Extend MemoryPool to allow a background thread to replenish the pool when it gets low.
• Extend ThreadPool to allow the user to pin the threads to specific CPU cores (on glibc).

Version 0.7.1

• Fix ring_stream destructor to not deadlock (fixes #41)

Version 0.7.0

• Change handling of incomplete heaps (fixes #39). Previously, incomplete heaps were only abandoned once there
were more thanmax_heaps of them. Now, they are abandoned oncemax_heapsmore heaps are seen, even if those
heaps were complete. This causes the warnings for incomplete heaps to appear closer to the time they arrived, and
also has some extremely small performance advantages due to changes in the implementation.

• backwards-incompatible change: remove set_max_heaps(). It was not previously documented, so hope-
fully is not being used. It could not be efficiently supported with the design changes above.

• Add spead2.recv.Stream.set_memcpy() to control non-temporal caching hints.
• Fix C++ version of spead2_bench to actually use the memory pool
• Reduce memory usage in spead2_bench (C++ version)

143

spead2, Release 4.3.1

Version 0.6.3

• Partially fix #40: set_max_heaps() and set_memory_pool() will no longer deadlock if called on a
stream that has already had a reader added and is receiving data.

Version 0.6.2

• Add a fast path for integer items that exactly fit in an immediate.
• Optimise Python code by replacing np.product with a pure Python implementation.

Version 0.6.1

• Filter out duplicate items from a heap. It is undefined which of a set of duplicates will be retained (it was already
undefined for spead2.ItemGroup).

Version 0.6.0

• Changed item versioning on receive to increment version number on each update rather that setting to heap id. This
is more robust to using a single item or item group with multiple streams, and most closely matches the send path.

• Made the protocol enums from the C++ library available in the Python library as well.
• Added functions to create stream start items (send) and detect them (recv).

Version 0.5.0

• Added friendlier support for multicast. When a multicast address is passed to add_udp_reader(), the socket
will automatically join the multicast group and set SO_REUSEADDR so that multiple sockets can consume from
the same stream. There are also new constructors and methods to give explicit control over the TTL (send) and
interface (send and receive), including support for IPv6.

Version 0.4.7

• Added in-memory mode to the C++ version of spead2_bench, to measure the packet handling speed independently
of the lossy networking code

• Optimization to duplicate packet checks. This makes a substantial performance improvement when using small
(e.g. 512 byte) packets and large heaps.

Version 0.4.6

• Fix a data corruption (use-after-free) bug on send side when data is being sent faster than the socket can handle it.

144 Chapter 10. Changelog

spead2, Release 4.3.1

Version 0.4.5

• Fix bug causing some log messages to be remapped to DEBUG level

Version 0.4.4

• Increase log level for packet rejection from DEBUG to INFO
• Some minor optimisations

Version 0.4.3

• Handle heaps that have out-of-range item offsets without crashing (#32)
• Fix handling of heaps without heap length headers
• spead2.send.UdpStream.send_heap() now correctly raises IOError if the heap is rejected due to
being full, or if there was an OS-level error in sending the heap.

• Fix spead2.send.trollius.UdpStream.async_send_heap() for the case where the last sent heap
failed.

• Use eventfd(2) for semaphores on Linux, which makes a very small improvement in ringbuffer performance.
• Prevent messages about descriptor replacements for descriptor reissues with no change.
• Fix a use-after-free bug (affecting Python only).
• Throw OverflowError on out-of-range UDP port number, instead of wrapping.

Version 0.4.2

• Fix compilation on systems without glibc
• Fix test suite for non-Linux systems
• Add spead2.send.trollius.UdpStream.async_flush()

Version 0.4.1

• Add C++ version of spead2_recv, a more fully-featured alternative to test_recv
• backwards-incompatible change: Add ring_heaps parameter to ring_stream constructor. Code that specifies
the contiguous_only parameter will need to be modified since the position has changed. Python code is unaffected.

• Increased the default for ring_heaps from 2 (previously hardcoded) to 4 to improve throughput for small heaps.
• Add support for user to provide the socket for UDP communications. This allows socket options to be set by the
user, for example, to configure multicast.

• Force numpy>=1.9.2 to avoid a numpy [bug](https://github.com/numpy/numpy/issues/5356).
• Add experimental support for receiving packets via netmap
• Improved receive performance on Linux, particularly for small packets, using [recvmmsg](http://linux.die.net/man/
2/recvmmsg).

145

https://docs.python.org/3/library/exceptions.html#IOError
https://docs.python.org/3/library/exceptions.html#OverflowError
https://github.com/numpy/numpy/issues/5356
http://linux.die.net/man/2/recvmmsg
http://linux.die.net/man/2/recvmmsg

spead2, Release 4.3.1

Version 0.4.0

• Enforce ASCII encoding on descriptor fields.
• Warn if a heap is dropped due to being incomplete.
• Add –ring option to C++ spead2_bench to test ringbuffer performance.
• Reading from a memory buffer (e.g. with add_buffer_reader()) is now reliable, instead of dropping heaps
if the consumer doesn’t keep up (heaps can still be dropped if packets extracted from the buffer are out-of-order,
but it is deterministic).

• The receive ringbuffer now has a fixed size (2), and pushes are blocking. The result is lower memory usage, and it
is no longer necessary to pass a large max_heaps value to deal with the consumer not always keeping up. Instead,
it may be necessary to increase the socket buffer size.

• backwards-incompatible change: Calling spead2::recv::ring_stream::stop() now discards re-
maining partial heaps instead of adding them to the ringbuffer. This only affects the C++ API, because the Python
API does not provide any access to partial heaps anyway.

• backwards-incompatible change: A heap with a stop flag is swallowed rather than passed to heap_ready()
(see issue [#29](https://github.com/ska-sa/spead2/issues/29)).

Version 0.3.0

This release contains a number of backwards-incompatible changes in the Python bindings, although most uses will
probably not notice:

• When a received character array is returned as a string, it is now of type str (previously it was unicode in
Python 2).

• An array of characters with a numpy descriptor with type S1 will no longer automatically be turned back into a
string. Only using a format of [(‘c’, 8)] will do so.

• The c format code may now only be used with a length of 8.
• When sending, values will now always be converted to a numpy array first, even if this isn’t the final representation
that will be put on the network. This may lead to some subtle changes in behaviour.

• The BUG_COMPAT_NO_SCALAR_NUMPY introduced in 0.2.2 has been removed. Now, specifying an old-style
format will always use that format at the protocol level, rather than replacing it with a numpy descriptor.

There are also some other bug-fixes and improvements:
• Fix incorrect warnings about send buffer size.
• Added –descriptors option to spead2_recv.py.
• The dtype argument to spead2.ItemGroup.add_item() is now optional, removing the need to specify
dtype=None when passing a format.

146 Chapter 10. Changelog

https://github.com/ska-sa/spead2/issues/29
https://docs.python.org/3/library/stdtypes.html#str

spead2, Release 4.3.1

Version 0.2.2

• Workaround for a PySPEAD bug that would cause PySPEAD to fail if sent a simple scalar value. The user must
still specify scalars with a format rather than a dtype to make things work.

Version 0.2.1

• Fix compilation on OS X again. The extension binary will be slightly larger as a result, but still much smaller than
before 0.2.0.

Version 0.2.0

• backwards-incompatible change: for sending, the heap count is now tracked internally by the stream, rather
than an attribute of the heap. This affects both C++ and Python bindings, although Python code that always uses
HeapGenerator rather than directly creating heaps will not be affected.

• The HeapGenerator is extended to allow items to be added to an existing heap and to give finer control over
whether descriptors and/or values are put in the heap.

• Fixes a bug that caused some values to be cast to non-native endian.
• Added overloaded equality tests on Flavour objects.
• Strip the extension binary to massively reduce its size

Version 0.1.2

• Coerce values to int for legacy ‘u’ and ‘i’ fields
• Fix flavour selection in example code

Version 0.1.1

• Fixes to support OS X

Version 0.1.0

• First public release

147

spead2, Release 4.3.1

148 Chapter 10. Changelog

CHAPTER

ELEVEN

LICENSE

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with this program. If not, see http:
//www.gnu.org/licenses/.

149

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

spead2, Release 4.3.1

150 Chapter 11. License

CHAPTER

TWELVE

INDICES AND TABLES

• genindex
• modindex
• search

151

spead2, Release 4.3.1

152 Chapter 12. Indices and tables

PYTHON MODULE INDEX

s
spead2, 7
spead2.recv.stream_stat_indices, 19

153

spead2, Release 4.3.1

154 Python Module Index

INDEX

Symbols
-C

command line option, 100
-D

command line option, 100
-N

command line option, 100
--count

command line option, 100
--direct-io

command line option, 100

A
add_buffer_reader() (spead2.recv.Stream

method), 13
add_descriptor() (spead2.send.Heap method), 21
add_end() (spead2.send.Heap method), 21
add_free_chunk() (spead2.recv.ChunkRingStream

method), 35
add_free_chunk() (spead2.recv.ChunkStreamRingGroup

method), 36
add_inproc_reader() (spead2.recv.Stream

method), 15
add_item() (spead2.ItemGroup method), 10
add_item() (spead2.send.Heap method), 21
add_packet() (spead2.InprocQueue method), 27
add_producer() (spead2.recv.ChunkRingbuffer

method), 34
add_start() (spead2.send.Heap method), 21
add_stat() (spead2.recv.StreamConfig method), 12
add_tcp_reader() (spead2.recv.Stream method), 14
add_to_heap() (spead2.send.HeapGenerator method),

20
add_udp_ibv_reader() (spead2.recv.Stream

method), 30
add_udp_pcap_file_reader()

(spead2.recv.Stream method), 15
add_udp_reader() (spead2.recv.Stream method), 13
async_flush() (spead2.send.asyncio.AsyncStream

method), 26
async_send_heap()

(spead2.send.asyncio.AsyncStream method),

25
async_send_heaps()

(spead2.send.asyncio.AsyncStream method),
26

AUTO (spead2.send.RateMethod attribute), 20

B
BATCHES (in module spead2.recv.stream_stat_indices), 19
built-in function

spead2.recv.Heap.is_end_of_stream(),
11

spead2.recv.Heap.is_start_of_stream(),
11

spead2.recv.IncompleteHeap.is_end_of_stream(),
18

spead2.recv.IncompleteHeap.is_start_of_stream(),
18

C
capacity() (spead2.recv.Stream.Ringbuffer method),

18
chunk_allocate_function (C++ type), 74
chunk_id (spead2.recv.Chunk attribute), 32
chunk_place_data (in module spead2.recv.numba),

32
ChunkRingbuffer (class in spead2.recv.asyncio), 34
cnt (spead2.recv.Heap attribute), 11
cnt (spead2.recv.IncompleteHeap attribute), 17
combine() (spead2.recv.StreamStatConfig method), 18
command line option

-C, 100
-D, 100
-N, 100
--count, 100
--direct-io, 100

compatible_shape() (spead2.Descriptor method), 9
config (spead2.recv.Stream attribute), 13
config (spead2.recv.StreamStats attribute), 18
connect() (spead2.send.asyncio.TcpStream class

method), 26
COUNTER (spead2.recv.StreamStatConfig.Mode attribute),

18

155

spead2, Release 4.3.1

D
data (spead2.recv.Chunk attribute), 32
data_fd (spead2.recv.ChunkRingbuffer attribute), 33
data_ringbuffer (spead2.recv.ChunkRingStream at-

tribute), 35
data_ringbuffer (spead2.recv.ChunkStreamRingGroup

attribute), 36
Descriptor (class in spead2), 9
disable_packet_presence()

(spead2.recv.ChunkStreamConfig method),
33

dynamic_shape() (spead2.Descriptor method), 9

E
emplace_back() (spead2.recv.ChunkStreamRingGroup

method), 36
empty() (spead2.recv.ChunkRingbuffer method), 33
enable_packet_presence()

(spead2.recv.ChunkStreamConfig method),
33

environment variable
M_MMAP_THRESHOLD, 96
OMP_NUM_THREADS, 115
PKG_CONFIG_PATH, 37
SKIP=pip-compile, 113
SPEAD2_IBV_COMP_VECTOR, 30
SPEAD2_IBV_INTERFACE, 30

extra (spead2.recv.Chunk attribute), 32

F
fd (spead2.recv.Stream attribute), 15
Flavour (built-in class), 7
flavour (spead2.recv.Heap attribute), 11
flavour (spead2.recv.IncompleteHeap attribute), 17
flush() (spead2.send.asyncio.AsyncStream method), 26
free_ringbuffer (spead2.recv.ChunkRingStream at-

tribute), 35
free_ringbuffer (spead2.recv.ChunkStreamRingGroup

attribute), 36
full() (spead2.recv.ChunkRingbuffer method), 33

G
get() (spead2.recv.asyncio.ChunkRingbuffer method), 34
get() (spead2.recv.asyncio.Stream method), 16
get() (spead2.recv.ChunkRingbuffer method), 34
get() (spead2.recv.Stream method), 15
get_end() (spead2.send.HeapGenerator method), 21
get_heap() (spead2.send.HeapGenerator method), 21
get_nowait() (spead2.recv.ChunkRingbuffer method),

34
get_nowait() (spead2.recv.Stream method), 15
get_start() (spead2.send.HeapGenerator method), 21

get_stat_index() (spead2.recv.StreamConfig
method), 12

getvalue() (spead2.send.BytesStream method), 25

H
heap_length (spead2.recv.IncompleteHeap attribute),

17
HeapGenerator (class in spead2.send), 20
HEAPS (in module spead2.recv.stream_stat_indices), 19
HW (spead2.send.RateMethod attribute), 20

I
ids() (spead2.ItemGroup method), 10
INCOMPLETE_HEAPS_EVICTED (in module

spead2.recv.stream_stat_indices), 19
INCOMPLETE_HEAPS_FLUSHED (in module

spead2.recv.stream_stat_indices), 19
InprocStream (class in spead2.send.asyncio), 28
intp_to_voidptr() (in module spead2.numba), 32
is_variable_size() (spead2.Descriptor method), 9
Item (class in spead2), 9
ItemGroup (class in spead2), 10
items() (spead2.ItemGroup method), 10
itemsize_bits (spead2.Descriptor attribute), 9

K
keys() (spead2.ItemGroup method), 10

L
LOSSLESS (spead2.recv.ChunkStreamGroupConfig.EvictionMode

attribute), 35
LOSSY (spead2.recv.ChunkStreamGroupConfig.EvictionMode

attribute), 35

M
M_MMAP_THRESHOLD, 96
MAX_BATCH (in module spead2.recv.stream_stat_indices),

19
MAXIMUM (spead2.recv.StreamStatConfig.Mode attribute),

18
maxsize (spead2.recv.ChunkRingbuffer attribute), 33
mode (spead2.recv.StreamStatConfig attribute), 18
module

spead2, 7
spead2.recv.stream_stat_indices, 19

N
name (spead2.recv.StreamStatConfig attribute), 18
next_stat_index() (spead2.recv.StreamConfig

method), 12
num_substreams (spead2.send.SyncStream attribute),

22

156 Index

spead2, Release 4.3.1

O
OMP_NUM_THREADS, 115

P
packet_presence_payload_size

(spead2.recv.ChunkStreamConfig attribute),
33

PACKETS (in module spead2.recv.stream_stat_indices), 19
payload_ranges (spead2.recv.IncompleteHeap at-

tribute), 18
PKG_CONFIG_PATH, 37
present (spead2.recv.Chunk attribute), 32
put() (spead2.recv.asyncio.ChunkRingbuffer method), 34
put() (spead2.recv.ChunkRingbuffer method), 34
put_nowait() (spead2.recv.ChunkRingbuffer method),

34
Python Enhancement Proposals

PEP 585, 127
PEP 604, 127
PEP 613, 127
PEP 685, 126
PEP 703, 116

Q
qsize() (spead2.recv.ChunkRingbuffer method), 33
queues (spead2.send.InprocStream attribute), 28

R
received_length (spead2.recv.IncompleteHeap at-

tribute), 17
remove_producer() (spead2.recv.ChunkRingbuffer

method), 34
repeat_pointers (spead2.send.Heap attribute), 21
ring_config (spead2.recv.Stream attribute), 13
ringbuffer (spead2.recv.Stream attribute), 15
ROUND_ROBIN (spead2.send.GroupMode attribute), 26

S
SEARCH_DIST (in module

spead2.recv.stream_stat_indices), 19
send_heap() (spead2.send.SyncStream method), 22
send_heaps() (spead2.send.SyncStream method), 22
SERIAL (spead2.send.GroupMode attribute), 26
set_affinity() (spead2.ThreadPool static method),

11
set_cnt_sequence() (spead2.send.SyncStream

method), 22
SINGLE_PACKET_HEAPS (in module

spead2.recv.stream_stat_indices), 19
size() (spead2.recv.Stream.Ringbuffer method), 18
SKIP=pip-compile, 113
space_fd (spead2.recv.ChunkRingbuffer attribute), 33
spead2

module, 7
spead2.InprocQueue (built-in class), 27
spead2.MemoryPool (built-in class), 17
spead2.MmapAllocator (built-in class), 16
spead2.recv.asyncio.Stream (built-in class), 16
spead2.recv.Chunk (built-in class), 32
spead2.recv.ChunkRingbuffer (built-in class),

33
spead2.recv.ChunkRingStream (built-in class),

35
spead2.recv.ChunkStreamConfig (built-in

class), 32
spead2.recv.ChunkStreamConfig.DEFAULT_MAX_CHUNKS

(built-in variable), 33
spead2.recv.ChunkStreamGroupConfig (built-

in class), 35
spead2.recv.ChunkStreamGroupConfig.EvictionMode

(built-in class), 35
spead2.recv.ChunkStreamGroupMember (built-

in class), 36
spead2.recv.ChunkStreamRingGroup (built-in

class), 36
spead2.recv.Heap (built-in class), 11
spead2.recv.Heap.is_end_of_stream()

built-in function, 11
spead2.recv.Heap.is_start_of_stream()

built-in function, 11
spead2.recv.IncompleteHeap (built-in class), 17
spead2.recv.IncompleteHeap.is_end_of_stream()

built-in function, 18
spead2.recv.IncompleteHeap.is_start_of_stream()

built-in function, 18
spead2.recv.RingStreamConfig (built-in class),

13
spead2.recv.Stream (built-in class), 13
spead2.recv.Stream.Ringbuffer (built-in

class), 18
spead2.recv.stream_stat_indices

module, 19
spead2.recv.StreamConfig (built-in class), 12
spead2.recv.StreamStatConfig (built-in class),

18
spead2.recv.StreamStatConfig.Mode (built-

in class), 18
spead2.recv.StreamStats (built-in class), 18
spead2.recv.UdpIbvConfig (built-in class), 29
spead2.send.asyncio.AsyncStream (built-in

class), 25
spead2.send.BytesStream (built-in class), 25
spead2.send.GroupMode (built-in class), 26
spead2.send.Heap (built-in class), 21
spead2.send.HeapReference (built-in class), 26
spead2.send.HeapReferenceList (built-in

class), 27

Index 157

spead2, Release 4.3.1

spead2.send.InprocStream (built-in class), 27
spead2.send.RateMethod (built-in class), 20
spead2.send.StreamConfig (built-in class), 19
spead2.send.SyncStream (built-in class), 22
spead2.send.TcpStream (built-in class), 24
spead2.send.UdpIbvConfig (built-in class), 30
spead2.send.UdpIbvStream (built-in class), 31
spead2.send.UdpStream (built-in class), 23
spead2.ThreadPool (built-in class), 11
spead2::descriptor (C++ struct), 42
spead2::descriptor::description (C++

member), 42
spead2::descriptor::format (C++ member),

42
spead2::descriptor::id (C++ member), 42
spead2::descriptor::name (C++ member), 42
spead2::descriptor::numpy_header (C++

member), 42
spead2::descriptor::shape (C++ member), 42
spead2::inproc_queue (C++ class), 67
spead2::inproc_queue::add_packet (C++

function), 67
spead2::inproc_queue::stop (C++ function),

67
spead2::io_service_ref (C++ class), 38
spead2::io_service_ref::get_shared_thread_pool

(C++ function), 38
spead2::io_service_ref::io_service_ref

(C++ function), 38
spead2::io_service_ref::operator* (C++

function), 38
spead2::io_service_ref::operator-> (C++

function), 38
spead2::memory_allocator (C++ class), 50
spead2::memory_allocator::allocate (C++

function), 51
spead2::memory_allocator::deleter (C++

class), 51
spead2::memory_allocator::deleter::get_allocator

(C++ function), 51
spead2::memory_allocator::deleter::get_user

(C++ function), 51
spead2::memory_allocator::free (C++ func-

tion), 51
spead2::recv::chunk (C++ class), 74
spead2::recv::chunk::chunk_id (C++ mem-

ber), 74
spead2::recv::chunk::data (C++ member), 74
spead2::recv::chunk::extra (C++ member),

74
spead2::recv::chunk::present (C++ mem-

ber), 74
spead2::recv::chunk::present_size (C++

member), 74

spead2::recv::chunk::stream_id (C++ mem-
ber), 74

spead2::recv::chunk_place_data (C++
struct), 73

spead2::recv::chunk_place_data::batch_stats
(C++ member), 73

spead2::recv::chunk_place_data::chunk_id
(C++ member), 73

spead2::recv::chunk_place_data::extra
(C++ member), 73

spead2::recv::chunk_place_data::extra_offset
(C++ member), 73

spead2::recv::chunk_place_data::extra_size
(C++ member), 73

spead2::recv::chunk_place_data::heap_index
(C++ member), 73

spead2::recv::chunk_place_data::heap_offset
(C++ member), 73

spead2::recv::chunk_place_data::items
(C++ member), 73

spead2::recv::chunk_place_data::packet
(C++ member), 73

spead2::recv::chunk_place_data::packet_size
(C++ member), 73

spead2::recv::chunk_place_function (C++
type), 73

spead2::recv::chunk_ready_function (C++
type), 74

spead2::recv::chunk_ring_stream (C++
class), 77

spead2::recv::chunk_ring_stream::chunk_ring_stream
(C++ function), 77

spead2::recv::chunk_stream (C++ class), 76
spead2::recv::chunk_stream::chunk_stream

(C++ function), 76
spead2::recv::chunk_stream::get_chunk_config

(C++ function), 77
spead2::recv::chunk_stream::get_heap_metadata

(C++ function), 77
spead2::recv::chunk_stream_config (C++

class), 74
spead2::recv::chunk_stream_config::default_max_chunks

(C++ member), 76
spead2::recv::chunk_stream_config::disable_packet_presence

(C++ function), 75
spead2::recv::chunk_stream_config::enable_packet_presence

(C++ function), 75
spead2::recv::chunk_stream_config::get_allocate

(C++ function), 75
spead2::recv::chunk_stream_config::get_items

(C++ function), 75
spead2::recv::chunk_stream_config::get_max_chunks

(C++ function), 75
spead2::recv::chunk_stream_config::get_max_heap_extra

158 Index

spead2, Release 4.3.1

(C++ function), 76
spead2::recv::chunk_stream_config::get_packet_presence_payload_size

(C++ function), 75
spead2::recv::chunk_stream_config::get_place

(C++ function), 75
spead2::recv::chunk_stream_config::get_ready

(C++ function), 75
spead2::recv::chunk_stream_config::set_allocate

(C++ function), 75
spead2::recv::chunk_stream_config::set_items

(C++ function), 75
spead2::recv::chunk_stream_config::set_max_chunks

(C++ function), 75
spead2::recv::chunk_stream_config::set_max_heap_extra

(C++ function), 75
spead2::recv::chunk_stream_config::set_place

(C++ function), 75
spead2::recv::chunk_stream_config::set_ready

(C++ function), 75
spead2::recv::chunk_stream_group (C++

class), 81
spead2::recv::chunk_stream_group::begin

(C++ function), 81
spead2::recv::chunk_stream_group::cbegin

(C++ function), 82
spead2::recv::chunk_stream_group::cend

(C++ function), 82
spead2::recv::chunk_stream_group::emplace_back

(C++ function), 82
spead2::recv::chunk_stream_group::empty

(C++ function), 81
spead2::recv::chunk_stream_group::end

(C++ function), 81
spead2::recv::chunk_stream_group::operator[]

(C++ function), 81
spead2::recv::chunk_stream_group::size

(C++ function), 81
spead2::recv::chunk_stream_group::stop

(C++ function), 82
spead2::recv::chunk_stream_group_config

(C++ class), 80
spead2::recv::chunk_stream_group_config::default_max_chunks

(C++ member), 81
spead2::recv::chunk_stream_group_config::eviction_mode

(C++ enum), 80
spead2::recv::chunk_stream_group_config::eviction_mode::LOSSLESS

(C++ enumerator), 80
spead2::recv::chunk_stream_group_config::eviction_mode::LOSSY

(C++ enumerator), 80
spead2::recv::chunk_stream_group_config::get_allocate

(C++ function), 81
spead2::recv::chunk_stream_group_config::get_eviction_mode

(C++ function), 80
spead2::recv::chunk_stream_group_config::get_max_chunks

(C++ function), 80
spead2::recv::chunk_stream_group_config::get_ready

(C++ function), 81
spead2::recv::chunk_stream_group_config::set_allocate

(C++ function), 80
spead2::recv::chunk_stream_group_config::set_eviction_mode

(C++ function), 80
spead2::recv::chunk_stream_group_config::set_max_chunks

(C++ function), 80
spead2::recv::chunk_stream_group_config::set_ready

(C++ function), 81
spead2::recv::chunk_stream_group_member

(C++ class), 82
spead2::recv::chunk_stream_group_member::adjust_config

(C++ function), 83
spead2::recv::chunk_stream_group_member::allocate

(C++ function), 83
spead2::recv::chunk_stream_group_member::emplace_reader

(C++ function), 82
spead2::recv::chunk_stream_group_member::flush

(C++ function), 83
spead2::recv::chunk_stream_group_member::flush_chunks

(C++ function), 83
spead2::recv::chunk_stream_group_member::get_chunk_config

(C++ function), 83
spead2::recv::chunk_stream_group_member::get_config

(C++ function), 83
spead2::recv::chunk_stream_group_member::get_heap_metadata

(C++ function), 83
spead2::recv::chunk_stream_group_member::get_stats

(C++ function), 83
spead2::recv::chunk_stream_group_member::start

(C++ function), 82
spead2::recv::chunk_stream_group_member::stop

(C++ function), 82
spead2::recv::chunk_stream_group_member::stop_received

(C++ function), 82
spead2::recv::chunk_stream_ring_group

(C++ class), 84
spead2::recv::chunk_stream_ring_group::begin

(C++ function), 84
spead2::recv::chunk_stream_ring_group::cbegin

(C++ function), 84
spead2::recv::chunk_stream_ring_group::cend

(C++ function), 84
spead2::recv::chunk_stream_ring_group::emplace_back

(C++ function), 85
spead2::recv::chunk_stream_ring_group::empty

(C++ function), 84
spead2::recv::chunk_stream_ring_group::end

(C++ function), 84
spead2::recv::chunk_stream_ring_group::operator[]

(C++ function), 84
spead2::recv::chunk_stream_ring_group::size

Index 159

spead2, Release 4.3.1

(C++ function), 84
spead2::recv::chunk_stream_ring_group::stop

(C++ function), 85
spead2::recv::heap (C++ class), 39
spead2::recv::heap::get_cnt (C++ function),

40
spead2::recv::heap::get_descriptors

(C++ function), 40
spead2::recv::heap::get_flavour (C++

function), 40
spead2::recv::heap::get_items (C++ func-

tion), 40
spead2::recv::heap::get_payload (C++

function), 40
spead2::recv::heap::heap (C++ function), 40
spead2::recv::heap::is_ctrl_item (C++

function), 40
spead2::recv::heap::is_end_of_stream

(C++ function), 40
spead2::recv::heap::is_start_of_stream

(C++ function), 40
spead2::recv::heap::to_descriptor (C++

function), 40
spead2::recv::incomplete_heap (C++ class),

40
spead2::recv::incomplete_heap::get_cnt

(C++ function), 41
spead2::recv::incomplete_heap::get_flavour

(C++ function), 41
spead2::recv::incomplete_heap::get_heap_length

(C++ function), 41
spead2::recv::incomplete_heap::get_items

(C++ function), 41
spead2::recv::incomplete_heap::get_payload

(C++ function), 41
spead2::recv::incomplete_heap::get_payload_ranges

(C++ function), 41
spead2::recv::incomplete_heap::get_received_length

(C++ function), 41
spead2::recv::incomplete_heap::incomplete_heap

(C++ function), 41
spead2::recv::incomplete_heap::is_ctrl_item

(C++ function), 41
spead2::recv::incomplete_heap::is_end_of_stream

(C++ function), 41
spead2::recv::incomplete_heap::is_start_of_stream

(C++ function), 41
spead2::recv::inproc_reader (C++ class), 68
spead2::recv::inproc_reader::inproc_reader

(C++ function), 68
spead2::recv::item (C++ struct), 41
spead2::recv::item::id (C++ member), 42
spead2::recv::item::immediate_value

(C++ member), 42

spead2::recv::item::is_immediate (C++
member), 42

spead2::recv::item::length (C++ member),
42

spead2::recv::item::ptr (C++ member), 42
spead2::recv::live_heap (C++ class), 39
spead2::recv::live_heap::get_bug_compat

(C++ function), 39
spead2::recv::live_heap::get_cnt (C++

function), 39
spead2::recv::live_heap::is_complete

(C++ function), 39
spead2::recv::live_heap::is_contiguous

(C++ function), 39
spead2::recv::live_heap::is_end_of_stream

(C++ function), 39
spead2::recv::mem_reader (C++ class), 49
spead2::recv::packet_memcpy_function

(C++ type), 52
spead2::recv::ring_stream (C++ class), 46
spead2::recv::ring_stream::begin (C++

function), 47
spead2::recv::ring_stream::end (C++ func-

tion), 47
spead2::recv::ring_stream::get_ring_config

(C++ function), 47
spead2::recv::ring_stream::pop (C++ func-

tion), 46
spead2::recv::ring_stream::pop_live

(C++ function), 46
spead2::recv::ring_stream::ring_stream

(C++ function), 46
spead2::recv::ring_stream::try_pop (C++

function), 46
spead2::recv::ring_stream::try_pop_live

(C++ function), 47
spead2::recv::ring_stream_config (C++

class), 45
spead2::recv::ring_stream_config::get_contiguous_only

(C++ function), 46
spead2::recv::ring_stream_config::get_heaps

(C++ function), 46
spead2::recv::ring_stream_config::set_contiguous_only

(C++ function), 46
spead2::recv::ring_stream_config::set_heaps

(C++ function), 46
spead2::recv::stream (C++ class), 44
spead2::recv::stream::emplace_reader

(C++ function), 45
spead2::recv::stream::flush (C++ function),

45
spead2::recv::stream::get_config (C++

function), 45
spead2::recv::stream::get_stats (C++

160 Index

spead2, Release 4.3.1

function), 45
spead2::recv::stream::start (C++ function),

45
spead2::recv::stream::stop (C++ function),

45
spead2::recv::stream_config (C++ class), 43
spead2::recv::stream_config::add_stat

(C++ function), 44
spead2::recv::stream_config::get_allow_out_of_order

(C++ function), 44
spead2::recv::stream_config::get_allow_unsized_heaps

(C++ function), 43
spead2::recv::stream_config::get_bug_compat

(C++ function), 44
spead2::recv::stream_config::get_explicit_start

(C++ function), 44
spead2::recv::stream_config::get_max_heaps

(C++ function), 43
spead2::recv::stream_config::get_memcpy

(C++ function), 43
spead2::recv::stream_config::get_memory_allocator

(C++ function), 43
spead2::recv::stream_config::get_stat_index

(C++ function), 44
spead2::recv::stream_config::get_stats

(C++ function), 44
spead2::recv::stream_config::get_stop_on_stop_item

(C++ function), 43
spead2::recv::stream_config::get_stream_id

(C++ function), 44
spead2::recv::stream_config::get_substreams

(C++ function), 43
spead2::recv::stream_config::next_stat_index

(C++ function), 44
spead2::recv::stream_config::set_allow_out_of_order

(C++ function), 44
spead2::recv::stream_config::set_allow_unsized_heaps

(C++ function), 43
spead2::recv::stream_config::set_bug_compat

(C++ function), 44
spead2::recv::stream_config::set_explicit_start

(C++ function), 44
spead2::recv::stream_config::set_max_heaps

(C++ function), 43
spead2::recv::stream_config::set_memcpy

(C++ function), 43
spead2::recv::stream_config::set_memory_allocator

(C++ function), 43
spead2::recv::stream_config::set_stop_on_stop_item

(C++ function), 43
spead2::recv::stream_config::set_stream_id

(C++ function), 44
spead2::recv::stream_config::set_substreams

(C++ function), 43

spead2::recv::stream_stat_config (C++
class), 56

spead2::recv::stream_stat_config::combine
(C++ function), 57

spead2::recv::stream_stat_config::get_mode
(C++ function), 57

spead2::recv::stream_stat_config::get_name
(C++ function), 57

spead2::recv::stream_stat_config::mode
(C++ enum), 56

spead2::recv::stream_stat_config::mode::COUNTER
(C++ enumerator), 56

spead2::recv::stream_stat_config::mode::MAXIMUM
(C++ enumerator), 56

spead2::recv::stream_stat_indices (C++
type), 57

spead2::recv::stream_stat_indices::batches
(C++ member), 57

spead2::recv::stream_stat_indices::custom
(C++ member), 57

spead2::recv::stream_stat_indices::heaps
(C++ member), 57

spead2::recv::stream_stat_indices::incomplete_heaps_evicted
(C++ member), 57

spead2::recv::stream_stat_indices::incomplete_heaps_flushed
(C++ member), 57

spead2::recv::stream_stat_indices::max_batch
(C++ member), 57

spead2::recv::stream_stat_indices::packets
(C++ member), 57

spead2::recv::stream_stat_indices::search_dist
(C++ member), 57

spead2::recv::stream_stat_indices::single_packet_heaps
(C++ member), 57

spead2::recv::stream_stat_indices::worker_blocked
(C++ member), 57

spead2::recv::stream_stats (C++ class), 52
spead2::recv::stream_stats::at (C++ func-

tion), 54
spead2::recv::stream_stats::batches

(C++ member), 56
spead2::recv::stream_stats::begin (C++

function), 54, 55
spead2::recv::stream_stats::cbegin (C++

function), 54
spead2::recv::stream_stats::cend (C++

function), 54
spead2::recv::stream_stats::const_iterator

(C++ type), 53
spead2::recv::stream_stats::const_pointer

(C++ type), 53
spead2::recv::stream_stats::const_reference

(C++ type), 53
spead2::recv::stream_stats::const_reverse_iterator

Index 161

spead2, Release 4.3.1

(C++ type), 53
spead2::recv::stream_stats::count (C++

function), 55
spead2::recv::stream_stats::crbegin

(C++ function), 55
spead2::recv::stream_stats::crend (C++

function), 55
spead2::recv::stream_stats::difference_type

(C++ type), 53
spead2::recv::stream_stats::empty (C++

function), 54
spead2::recv::stream_stats::end (C++

function), 54, 55
spead2::recv::stream_stats::find (C++

function), 55
spead2::recv::stream_stats::get_config

(C++ function), 53
spead2::recv::stream_stats::heaps (C++

member), 56
spead2::recv::stream_stats::incomplete_heaps_evicted

(C++ member), 56
spead2::recv::stream_stats::incomplete_heaps_flushed

(C++ member), 56
spead2::recv::stream_stats::iterator

(C++ type), 53
spead2::recv::stream_stats::key_type

(C++ type), 53
spead2::recv::stream_stats::mapped_type

(C++ type), 53
spead2::recv::stream_stats::max_batch

(C++ member), 56
spead2::recv::stream_stats::operator+

(C++ function), 55
spead2::recv::stream_stats::operator+=

(C++ function), 55
spead2::recv::stream_stats::operator=

(C++ function), 53
spead2::recv::stream_stats::operator[]

(C++ function), 54
spead2::recv::stream_stats::packets

(C++ member), 56
spead2::recv::stream_stats::pointer

(C++ type), 53
spead2::recv::stream_stats::rbegin (C++

function), 55
spead2::recv::stream_stats::reference

(C++ type), 53
spead2::recv::stream_stats::rend (C++

function), 55
spead2::recv::stream_stats::reverse_iterator

(C++ type), 53
spead2::recv::stream_stats::search_dist

(C++ member), 56
spead2::recv::stream_stats::single_packet_heaps

(C++ member), 56
spead2::recv::stream_stats::size (C++

function), 54
spead2::recv::stream_stats::size_type

(C++ type), 53
spead2::recv::stream_stats::stream_stats

(C++ function), 53
spead2::recv::stream_stats::value_type

(C++ type), 53
spead2::recv::stream_stats::worker_blocked

(C++ member), 56
spead2::recv::tcp_reader (C++ class), 49
spead2::recv::tcp_reader::tcp_reader

(C++ function), 49
spead2::recv::udp_ibv_config (C++ class),

68
spead2::recv::udp_ibv_config::add_endpoint

(C++ function), 68
spead2::recv::udp_ibv_config::default_buffer_size

(C++ member), 69
spead2::recv::udp_ibv_config::default_max_poll

(C++ member), 69
spead2::recv::udp_ibv_config::default_max_size

(C++ member), 69
spead2::recv::udp_ibv_config::get_buffer_size

(C++ function), 69
spead2::recv::udp_ibv_config::get_comp_vector

(C++ function), 69
spead2::recv::udp_ibv_config::get_endpoints

(C++ function), 68
spead2::recv::udp_ibv_config::get_interface_address

(C++ function), 69
spead2::recv::udp_ibv_config::get_max_poll

(C++ function), 69
spead2::recv::udp_ibv_config::get_max_size

(C++ function), 68
spead2::recv::udp_ibv_config::set_buffer_size

(C++ function), 69
spead2::recv::udp_ibv_config::set_comp_vector

(C++ function), 69
spead2::recv::udp_ibv_config::set_endpoints

(C++ function), 68
spead2::recv::udp_ibv_config::set_interface_address

(C++ function), 69
spead2::recv::udp_ibv_config::set_max_poll

(C++ function), 69
spead2::recv::udp_ibv_config::set_max_size

(C++ function), 68
spead2::recv::udp_ibv_reader (C++ class),

70
spead2::recv::udp_ibv_reader::udp_ibv_reader

(C++ function), 70
spead2::recv::udp_pcap_file_reader (C++

class), 50

162 Index

spead2, Release 4.3.1

spead2::recv::udp_pcap_file_reader::udp_pcap_file_reader
(C++ function), 50

spead2::recv::udp_reader (C++ class), 47
spead2::recv::udp_reader::udp_reader

(C++ function), 47, 48
spead2::ringbuffer (C++ class), 77
spead2::ringbuffer::add_producer (C++

function), 79
spead2::ringbuffer::begin (C++ function), 79
spead2::ringbuffer::capacity (C++ func-

tion), 79
spead2::ringbuffer::emplace (C++ function),

78
spead2::ringbuffer::end (C++ function), 79
spead2::ringbuffer::get_data_sem (C++

function), 79
spead2::ringbuffer::get_space_sem (C++

function), 79
spead2::ringbuffer::pop (C++ function), 78
spead2::ringbuffer::push (C++ function), 78
spead2::ringbuffer::remove_producer

(C++ function), 79
spead2::ringbuffer::size (C++ function), 79
spead2::ringbuffer::stop (C++ function), 79
spead2::ringbuffer::try_emplace (C++

function), 78
spead2::ringbuffer::try_pop (C++ function),

78
spead2::ringbuffer::try_push (C++ func-

tion), 78
spead2::ringbuffer_empty (C++ class), 79
spead2::ringbuffer_full (C++ class), 79
spead2::ringbuffer_stopped (C++ class), 80
spead2::send::group_mode (C++ enum), 61
spead2::send::group_mode::ROUND_ROBIN

(C++ enumerator), 61
spead2::send::group_mode::SERIAL (C++

enumerator), 61
spead2::send::heap (C++ class), 57
spead2::send::heap::add_descriptor (C++

function), 58
spead2::send::heap::add_end (C++ function),

58
spead2::send::heap::add_item (C++ func-

tion), 58
spead2::send::heap::add_pointer (C++

function), 58
spead2::send::heap::add_start (C++ func-

tion), 58
spead2::send::heap::get_flavour (C++

function), 58
spead2::send::heap::get_item (C++ func-

tion), 58
spead2::send::heap::get_repeat_pointers

(C++ function), 59
spead2::send::heap::heap (C++ function), 58
spead2::send::heap::item_handle (C++

type), 58
spead2::send::heap::set_repeat_pointers

(C++ function), 58
spead2::send::heap_reference (C++ struct),

59
spead2::send::heap_reference::cnt (C++

member), 59
spead2::send::heap_reference::heap (C++

member), 59
spead2::send::heap_reference::heap_reference

(C++ function), 59
spead2::send::heap_reference::rate (C++

member), 59
spead2::send::heap_reference::substream_index

(C++ member), 59
spead2::send::inproc_stream (C++ class), 67
spead2::send::inproc_stream::get_queue

(C++ function), 67
spead2::send::inproc_stream::inproc_stream

(C++ function), 67
spead2::send::item (C++ struct), 59
spead2::send::item::allow_immediate

(C++ member), 60
spead2::send::item::id (C++ member), 60
spead2::send::item::immediate (C++ mem-

ber), 60
spead2::send::item::is_inline (C++ mem-

ber), 60
spead2::send::item::item (C++ function), 59
spead2::send::item::length (C++ member),

60
spead2::send::item::ptr (C++ member), 60
spead2::send::stream (C++ class), 61
spead2::send::stream::async_send_heap

(C++ function), 62
spead2::send::stream::async_send_heaps

(C++ function), 62, 63
spead2::send::stream::completion_handler

(C++ type), 61
spead2::send::stream::flush (C++ function),

63
spead2::send::stream::get_io_service

(C++ function), 62
spead2::send::stream::get_num_substreams

(C++ function), 63
spead2::send::stream::set_cnt_sequence

(C++ function), 62
spead2::send::stream_config (C++ class), 60
spead2::send::stream_config::get_burst_rate

(C++ function), 61
spead2::send::stream_config::get_burst_rate_ratio

Index 163

spead2, Release 4.3.1

(C++ function), 61
spead2::send::stream_config::get_burst_size

(C++ function), 61
spead2::send::stream_config::get_max_heaps

(C++ function), 61
spead2::send::stream_config::get_max_packet_size

(C++ function), 60
spead2::send::stream_config::get_rate

(C++ function), 60
spead2::send::stream_config::get_rate_method

(C++ function), 61
spead2::send::stream_config::set_burst_rate_ratio

(C++ function), 61
spead2::send::stream_config::set_burst_size

(C++ function), 61
spead2::send::stream_config::set_max_heaps

(C++ function), 61
spead2::send::stream_config::set_max_packet_size

(C++ function), 60
spead2::send::stream_config::set_rate

(C++ function), 60
spead2::send::stream_config::set_rate_method

(C++ function), 61
spead2::send::streambuf_stream (C++

class), 66
spead2::send::streambuf_stream::streambuf_stream

(C++ function), 67
spead2::send::tcp_stream (C++ class), 66
spead2::send::tcp_stream::tcp_stream

(C++ function), 66
spead2::send::udp_ibv_config (C++ class),

70
spead2::send::udp_ibv_config::add_endpoint

(C++ function), 71
spead2::send::udp_ibv_config::add_memory_region

(C++ function), 70
spead2::send::udp_ibv_config::default_buffer_size

(C++ member), 72
spead2::send::udp_ibv_config::default_max_poll

(C++ member), 72
spead2::send::udp_ibv_config::get_buffer_size

(C++ function), 71
spead2::send::udp_ibv_config::get_comp_vector

(C++ function), 71
spead2::send::udp_ibv_config::get_endpoints

(C++ function), 70
spead2::send::udp_ibv_config::get_interface_address

(C++ function), 71
spead2::send::udp_ibv_config::get_max_poll

(C++ function), 71
spead2::send::udp_ibv_config::get_memory_regions

(C++ function), 70
spead2::send::udp_ibv_config::get_ttl

(C++ function), 70

spead2::send::udp_ibv_config::set_buffer_size
(C++ function), 71

spead2::send::udp_ibv_config::set_comp_vector
(C++ function), 71

spead2::send::udp_ibv_config::set_endpoints
(C++ function), 70

spead2::send::udp_ibv_config::set_interface_address
(C++ function), 71

spead2::send::udp_ibv_config::set_max_poll
(C++ function), 71

spead2::send::udp_ibv_config::set_memory_regions
(C++ function), 70

spead2::send::udp_ibv_config::set_ttl
(C++ function), 70

spead2::send::udp_ibv_stream (C++ class),
72

spead2::send::udp_ibv_stream::udp_ibv_stream
(C++ function), 72

spead2::send::udp_stream (C++ class), 64
spead2::send::udp_stream::udp_stream

(C++ function), 64--66
spead2::set_log_function (C++ function), 68
spead2::thread_pool (C++ class), 37
spead2::thread_pool::get_io_service

(C++ function), 38
spead2::thread_pool::set_affinity (C++

function), 38
spead2::thread_pool::stop (C++ function), 38
spead2::thread_pool::thread_pool (C++

function), 38
SPEAD2_IBV_COMP_VECTOR, 30
SPEAD2_IBV_INTERFACE, 30
SPEAD2_MAJOR (C macro), 103
SPEAD2_MINOR (C macro), 103
SPEAD2_PATCH (C macro), 103
SPEAD2_VERSION (C macro), 103
start() (spead2.recv.Stream method), 15
stats (spead2.recv.Stream attribute), 15
stats (spead2.recv.StreamConfig attribute), 13
stop() (spead2.InprocQueue method), 27
stop() (spead2.recv.ChunkRingbuffer method), 34
stop() (spead2.recv.Stream method), 15
stop() (spead2.ThreadPool method), 11
stream_id (spead2.recv.Chunk attribute), 32
SW (spead2.send.RateMethod attribute), 20

U
update() (spead2.ItemGroup method), 10

V
value (spead2.Item attribute), 9
values() (spead2.ItemGroup method), 10
version (spead2.Item attribute), 10

164 Index

spead2, Release 4.3.1

W
warn_on_empty (spead2.MemoryPool attribute), 17
WORKER_BLOCKED (in module

spead2.recv.stream_stat_indices), 19

Index 165

	Introduction to spead2
	Preparation
	Installing spead2 for Python
	Installing a binary wheel
	Python install from source

	Installing spead2 for C++
	Shared library

	Python API for spead2
	SPEAD flavours
	Mapping of SPEAD protocol to Python
	Stream control items
	Items and item groups
	Thread pools
	Receiving
	Configuration
	Blocking receive
	Asynchronous receive
	Packet ordering
	Memory allocators
	Incomplete Heaps
	Statistics
	Explicit start

	Sending
	Substreams
	Blocking send
	UDP
	TCP
	Raw bytes
	In-process transport

	Asynchronous send
	TCP

	Batching

	In-process transport
	Sending
	Receiving

	Logging
	Support for ibverbs
	System configuration
	ConnectX®-3
	ConnectX®-4+, MLNX OFED up to 4.9
	All other cases
	Multicast loopback

	Receiving
	Environment variables

	Sending

	Chunking receiver
	Writing a place callback
	Reference

	Chunking stream groups

	C++ API for spead2
	C++ API stability
	Asynchronous I/O
	Receiving
	Heaps
	Streams
	Readers
	Memory allocators
	Custom memory scatter
	Statistics

	Sending
	Heaps
	Configuration
	Streams

	In-process transport
	Sending
	Receiving

	Logging
	Support for ibverbs
	PeerDirect

	Chunking receiver
	Ringbuffer convenience API

	Chunking stream groups
	Ringbuffer convenience API

	Advanced features
	Chunking receiver
	Packet presence
	Extra data
	Ringbuffer convenience API
	Examples
	Advice for senders

	Chunking stream groups
	Ringbuffer convenience API
	Caveats

	Receiver stream statistics
	Core statistics
	Chunk receiver statistics
	Custom statistics

	Performance tuning
	System tuning
	Kernel bypass networking
	Kernel network stack
	Routing

	CPU
	AMD Epyc tuning
	Interrupt affinity

	Protocol design
	Heap size
	Packet size
	Alignment
	Endianness
	Data format

	Application tuning
	Memory allocation
	Chunking receiver
	Heap lifetime (Python)
	Custom allocators

	Tuning based on heap size
	Thread pools

	Command-line tools
	spead2_bench
	spead2_send/spead2_recv
	mcdump
	Installation
	Usage
	Limitations

	spead2_net_raw

	Migrating to version 3
	Receive stream configuration
	Send stream configuration
	Substreams
	Out-of-order packets
	Loop argument to asyncio functions
	Command-line arguments in tools
	Removal of deprecated functionality
	Queue depth for sending with ibverbs

	Migrating to version 4
	Removed functionality
	C++
	Python

	Meson
	C++17
	Boost
	pcap
	Code generation
	Python configuration
	Python editable installs

	Developer documentation
	Development processes
	Getting started with development
	Python setup
	C++ setup
	Documentation
	Coding style
	Committing
	Making a pull request

	Repository layout
	C++
	Python
	Other

	Debugging
	Debug builds
	Debug logging
	Debug symbols for Python wheels
	Reducing worker threads

	Release checklist

	Design
	Python bindings
	Global Interpreter Lock
	Semaphores
	Asynchronous callbacks
	Interpreter shutdown

	Locking and asio for receive
	Batching
	Stopping

	Destruction of receive streams
	Synchronisation in chunk stream groups
	Send rate limiting
	State machine
	Time precision

	Generic segmentation offload
	Linking to ibverbs

	Changelog
	License
	Indices and tables
	Python Module Index
	Index

