
Client: SKA SA and NRF

Project: CASPER

Type: Data Interface Protocol Definition

SPEAD: Streaming Protocol for Exchanging
Astronomical Data

Document
number:

SSA4700-0000-001

Revision: 1

Classification: Open Source, GPL

Author: J. Manley, M. Welz, A. Parsons, S. Ratcliffe

Date: 2012/10/16

Open Source, GPL
SSA4700-0000-001

Revision: 1

Document Approval

Function Name Designation Affiliation Date Signature

Submitted by R. van Rooyen DBE DSP Specialist SKA SA

Approved by M. Welz DBE Software SKA SA

Approved by J. Manley DBE DSP Specialist SKA SA

Approved by S. Ratcliffe SPT Subsystem Manager SKA SA

Approved by A. Parsons PI PAPER

Accepted by F. Kapp DBE Subsystem Manager SKA SA

Document History

Revision Date of Issue ECN Number Comments

A 2009/04/17 N/A Misc changes made after meeting between DBE, CSS
and DSG teams. Packet header field numbering altered,
inclusion of higher resolution fields, etc

B 2009/04/30 N/A Added Timestamp scale factor field (47), updated ex-
planation and example meta data packets accordingly

C 2009/07/01 N/A Conversion from memo to interface control document

D 2009/07/10 N/A Renamed to NRF-FF-ICD-W-402

E 2009/07/13 N/A Renamed to NRF-FF-ICD-F-402

F 2009/07/20 N/A Made changes requested by Alan, retrospectively
changed the version numbers to letters

G 2009/07/27 N/A Renamed to K8000-0027V1-002 ICD

H 2009/08/05 N/A Changes from internal review

I 2009/09/21 N/A Started incorporating changes from OAR of Thomas

J 2009/10/27 N/A Renamed to SPADE for public release. Incremented to
version 3 of the protocol. Added data descriptors.

K 2009/11/09 N/A Renamed to SPEAD. Added unified option and payload
descriptor.

L 2010/03/21 N/A Misc changes after discussions between J. Manley and
A. Parsons.

M 2010/06/07 N/A Document revision and renumbering of items.

N 2010/08/28 N/A Updating for implementation changes and error correc-
tion.

O 2010/10/07 N/A First review before document release.

1 2012/10/16 N/A First revision release.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 2 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

Document Software

Task Package Version

Stylesheet katdoc 1.1.2

Text processor LATEX 3.1415926-1.40.10

Editor Vim 7.2.445

Company Details

Name SKA South Africa Office

Physical/Postal Address

Third Floor

The Park

Park Road

Pinelands

7405

Tel. +27 21 506 7300

Fax +27 21 506 7375

Website http://www.ska.ac.za/

2012/10/16
c©CASPER 2010

Open Source, GPL Page 3 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

Contents

1 Applicable and Reference Documents 6

1.1 Applicable Documents . 6

1.2 Related Documents . 6

2 Glossary 6

3 Scope 7

4 Protocol Layers 7

5 Definition 7

6 Data Overview 8

7 Data Flow 9

8 Packet Data Representation 10

8.1 SPEAD header . 10

8.2 ItemPointers: optional fields . 11

8.2.1 NULL . 12

8.2.2 Heap counter . 12

8.2.3 Heap size . 13

8.2.4 Heap offset . 13

8.2.5 Packet payload length . 13

8.2.6 Stream control . 14

8.3 ItemDescriptors . 14

8.3.1 ItemDescriptorID . 15

8.3.2 ItemDescriptorName . 15

8.3.3 ItemDescriptorDescription . 15

8.3.4 ItemDescriptorType . 15

8.3.5 ItemDescriptorShape . 16

8.3.6 ItemDescriptorDType . 16

8.3.7 Example ItemDescriptor . 17

9 Extra features 17

9.1 HEAP processing . 17

A Example Packet Exchange 19

2012/10/16
c©CASPER 2010

Open Source, GPL Page 4 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

List of Figures

1 Example transmit data . 8

2 Example Heap construct . 9

3 Heap packet example . 10

4 Example ItemDescriptor construct . 17

5 Example ItemDescriptor exchange . 20

6 Example data exchange . 21

List of Tables

List of Abbreviations

FF Fringe Finder
ICD Interface Control Document
IP Internet Protocol
KAT Karoo Array Telescope
KATCP KAT Communication Protocol
TCP Transmission Control Protocol

2012/10/16
c©CASPER 2010

Open Source, GPL Page 5 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

1 Applicable and Reference Documents

1.1 Applicable Documents

The following documents are applicable to the extent stated herein. In the event of conflict between the contents
of the applicable documents and this document, the applicable documents shall take precedence.

• 1 - Simon Ratcliffe, (https://github.com/ska-sa/PySPEAD), 2010.

1.2 Related Documents

The following documents are referenced in this document. In the event of conflict between the contents of the
referenced documents and this document, this document shall take precedence.

[1] Simon Cross, Marc Welz, Jason Manley. Kat control protocol specification.
http://casper.berkeley.edu/wiki/images/1/11/NRF-KAT7-6.0-IFCE-002-Rev4.pdf.

[2] Jason Manley, Marc Welz, Simon Ratcliffe. Kat-7 data interface. K0000-2006V1-05.

2 Glossary

TCP/IP Transmission Control Protocol (TCP) is a set of rules (protocol) used along with the Internet
Protocol (IP) to send data in the form of message units between computers over the Internet.
While IP takes care of delivery of the data, TCP takes care of keeping track of the individual
units of data (called packets) that a message is divided into for efficient routing through the
Internet.

UDP User Datagram Protocol (UDP) uses the IP to transport a data unit (called a datagram) from
one computer to another, but UDP makes no guarantee about data delivery, nor does it
provide sequencing of the packets. This means that it is up to the application program that
uses UDP to make sure that the entire message has arrived and is in the correct order.

Datagram A datagram is a self-contained, independent entity of data carrying sufficient information to
be routed from the source to the destination computer without reliance on earlier exchanges
between the source and destination computer and the transporting network.

Item A variable transmitted using the SPEAD protocol.

ItemGroup A collection of Items to be transmitted.

Heap An ItemGroup packaged for transmission as UDP data packets.

ItemPointer Meta data in the packet header containing information on how to unpack the received data-
gram.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 6 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

3 Scope

This document describes a data stream format suitable for use by radio astronomy instruments. The data stream
is distinct from the KATCP control protocol described in Reference [1].

Many instruments output data over Ethernet. These streams are often high speed and unsuitable for TCP/IP
links. UDP is often preferred in the cases where partial data-loss can be accommodated. This document aims
to standardise the output format of such UDP streams.

An essential feature of the data stream is that it is self describing. This self description extends to the content
and interpretation of the optional fields in the packet header, as well as the data payload itself. The same receive
and transmit code may be used for multiple instruments as the layout of the packets are well defined.

Emphasis is placed on lightweight implementation, suitable for data packetisation by hardware devices or by
software processes, while retaining flexibility for complex, dynamically changing data exchanges. Descoping,
by way of fixed packet format, is required for simple receivers.

Metadata and variable descriptors can be injected into the data stream at runtime and recorded or processed
along with the primary data stream. It is also possible to record the raw data stream directly to disk for later
parsing. Note: Data flow is unidirectional in a given SPEAD data stream.

The format of the application-layer packetised stream is described in this document. Lower speed and ad-hoc
data products may be transferred using the TCP-based KATCP control interface [1].

4 Protocol Layers

The data stream format describes the application and presentation layers of the OSI model. Data transmission
can take place over any medium—such as serial data lines, or Ethernet networks—and is generally transmitted
via a network interface, or stored on disk.

The preferred interface for network communications consists of the following layers:

Application and Presentation :
The data format as described in this document.

Session and Transport :
UDP, noting that the receiving party cannot request retransmission of lost, duplicated or corrupt packets.

Network :
IP (Internet protocol).

Link :
Ethernet (100 GbE, 40 GbE, 10 GbE, GbE, or 100 Mb/s).

Physical :
Any Ethernet medium, such as CFP, QSFP+, SFP+, CX4 or other 10 Gigabit Ethernet cable, Cat6, Cat5e,
etc.

5 Definition

The SPEAD protocol is designed to propagate changes in a set of variables from one location to another. The
origin and use of these variables are application dependent and is, as such, beyond the scope of this document.
See KAT-7 data interface document for KAT-7 example implementation [2].

2012/10/16
c©CASPER 2010

Open Source, GPL Page 7 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

SPEAD uses the UDP protocol to transmit data packets called datagrams from one computer to another. Each
user-created datagram consists of a SPEAD header, three or more optional ItemPointer fields and a data payload.
While SPEAD can cope with lost or missing packets, it has no mechanism to request resending of missing data.

Different flavours of SPEAD can be created by specifying the number of addressable variables and total
variable-space size. The SPEAD flavour is expressed as SPEAD-XX-YY where XX is the ItemPointer bit length
and YY is the heap address space; XX is always greater than or equal to YY. This format is self-defining and
these widths are configurable in the SPEAD header. Once specified, the allocated SPEAD sizes (XX and YY)
should remain static for a given implementation.

SPEAD-64-40 is currently deployed, allowing for data heaps of up to 1T/B (40 bit) and up to 223 (8388608)
variables (1-bit is reserved for addressing mode). The Heap size limit (YY) does not limit the total size of the
SPEAD stream, it merely constrains the total number of variables Items that can be changed simultaneously.

6 Data Overview

Each variable is associated with an Item. The Item contains:

• the variable’s value, which can be a single-valued data product, multi-dimensional data, or can point to
other Items or multiples of other Items, thereby allowing hierarchical data structures;

• associated metadata, i.e. the variable name, description, type and shape;

• a numerical identifier.

Figure 1: Consider a grouping of data that we might wish to transmit. It has multiple data elements, including a string
“MyString”, an integer counter “MyCntr”, and an array of 32-bit unsigned integers called “MyArray”.

Items are collected into ItemGroups. An ItemGroup can be modified by the addition of Items, and by the mod-
ification of an Item’s value or its metadata. Once Items in an ItemGroup have been modified to a selfconsistent
state, the change in the state of the ItemGroup can be encoded as a Heap.

The Heap is subdivided into a collection of data packets and sent as a stream of UDP datagrams from the
transmitter to the receiver. ItemPointers in the packet header point to an address within an assembled Heap of
data where the Item’s data-products are stored. This allows for very large data lengths for a given Item, which is
unrestricted by the packet length. On the receiver, the Heap is reassembled and then unpacked as an ItemGroup.
All Items can be automatically unpacked and interpreted before presentation to the user’s application.

ItemPointers can be used as either an immediate address or as an absolute address. Immediate addressing refers
to using the ItemPointer as a value instead of a pointer. This is more efficient for Items which contain either
character or single-valued items. Absolute addressing refers to using the ItemPointer as an address within an
assembled Heap. This address is a byte offset within the Heap where the Item’s data-products are stored.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 8 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

7 Data Flow

A Heap consists of a header section, followed by a payload section. The header section is a list of ItemPointers,
while the payload contains Items’ values.

The process of encoding changes in Items as a Heap proceeds as follows:

1. For each Item whose value has changed, the binary representation of the new value is appended to the
Heap payload, and an ItemPointer is appended to the Heap header. An ItemPointer encodes the Item’s
numerical identifier, and a byte offset into the Heap’s payload where the Item’s value begins. For the
special case where an Item’s value fits within the field allocated for the ItemPointer address, the value is
not appended to the Heap, but is instead placed in the address field, and a one-bit IMMEDIATE flag in
the ItemPointer is set to indicate that the value can be accessed directly as illustrated in Figure 2.

Figure 2: An example Heap of Items to transmit: user-defined Item with identifier 0x167 has an integer value of 0x104
and is included directly into the header (with the IMMEDIATE flag set to 1), while user-defined Item 0x168’s value can
be found at Heap offset 0x0.

2. An ItemDescriptor is generated for each new Item that has been added to the ItemGroup, that is, the
first time this variable is created. An ItemDescriptor is also created when a specific Item’s structure has
changed. The value of an ItemDescriptor is itself a SpeadStream that may contain such Items as NAME,
DESCRIPTION, TYPE, SHAPE, and ID. The binary representation of this SpeadStream is appended to
the Heap payload, and a special ItemPointer is added to the header of the Heap that has its numerical
identifier set to DESCRIPTOR_ID, and points to the start of the ItemDescriptor’s value in the Heap
payload. The reader is referred to the section on ItemDescriptors for more detail.

3. This Heap is now converted into a series of SPEAD packets. Each packet consists of a SPEAD header,
a number of ItemPointers, and a payload. With the exception of some ItemPointers added to aid in
packet decoding and reassembly, all ItemPointers are drawn from the Heap header. Each packet payload
contains a portion of the Heap payload. Taken together, the generated series of packets will contain the
entirety of the Heap’s header and payload, along with a small number of IMMEDIATE ItemPointers that
allow each packet to be associated with reconstructing a single Heap on the receive side.

4. After packets pass through a physical transport layer – such as a network interface, POSIX pipe, file – a
receiver sorts incoming packets by associated Heap and begins the process of reconstructing the Heap.
Packet headers are concatenated into a Heap header, and packet payloads are concatenated in the correct
order to reconstruct the Heap payload. Missing packets are flagged.

5. Next, each ItemPointer in the Heap header is processed, associating a numerical identifier with a the
binary value. For DIRECT-addressed ItemPointers, this involves seeking within the Heap payload to
the specified address offset and extracting data from that point to the start of the next ItemPointer. For
IMMEDIATE ItemPointers, the binary value is extracted directly from the address field.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 9 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

6. Finally, the receiver’s ItemGroup associates each numerical identifier and binary value pair with an Item
having the same identifier. All ItemPointers are processed, creating new Items when appropriate. Each
binary value is then decoded to an actual value by using the structure information provided by the asso-
ciated ItemDescriptor.

8 Packet Data Representation

Data is always transmitted and stored most significant bit first, that is, Internet Protocol standard byte ordering.
Because this same ordering is used for on-disk storage, data can be streamed directly between the network and
storage.

At a minimum, a SPEAD packet must contain the following, as illustrated in Figure 3:

• A SPEAD header

• Three ItemPointers, in no particular order, describing:

– the packet payload length to locate packet boundaries for on-disk storage,

– the offset of this packet’s contents within the Heap,

– and a counter, timestamp, or other unique number indicating the Heap to which it belongs.

Figure 3: Example SPEAD-64-40 packet containing 5 Items. This packet belongs to Heap 1 and has a payload that is 8
bytes long which starts at Heap offset 0x00 i.e. this is the first packet of the Heap.

8.1 SPEAD header

The SPEAD header is always 8 octets (64 bits) long. All packets have a header of the following form:

MSb LSb
Magic # (8b) Version (8b) ItemPointerWidth (8b) HeapAddrWidth (8b) Reserved (16b) # Items (16b)

MagicNumber : This is a constant value. All packets will start with the following 8 bit pattern: (msb) 0101
0011 (lsb) which has a numerical value of 0x53 and represents an ASCII S. This allows basic identifica-
tion of the packet as a SPEAD packet.

Version : This field identifies the version of the packet format. Designed in case future packet structures differ.
The version described here is 4.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 10 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

ItemPointerWidth and HeapAddressWidth : These fields describe the number of bytes of each Heap ad-
dress (HeapAddressesWidth) and the total size of an ItemIdentifier, the ItemIdentifierWidth. The sum of
the two numbers indicate the size of an ItemPointer.

Initial implementations of SPEAD (SPEAD-64-40) have 64 bit ItemPointer fields, of which 40 bits ad-
dress the data in a Heap, one bit chooses the addressing mode and the remaining 23 bits represent a
numeric ItemIdentifier. HeapAddressWidth is thus set to 40bits/8bits = 5 bytes and ItemPointerWidth
set to 24bits/8bits = 3 bytes, which includes the ItemPointerWidth which is the one bit, the MSB, al-
ways used for Addressing mode. This configuration defines the flavour of SPEAD and is referenced as
SPEAD-64-40. These numbers need to remain static for a given configuration or implementation once
the stream has started.

Reserved : This field should be ignored. The space is reserved for future allocation.

NumberOfItems : The value stored in this field indicates the number of ItemPointers contained in this packet.
ItemPointers follow immediately after the SPEAD header. The packet payload follows directly after
these ItemPointer fields. This field allows the offset of the payload to be determined.

8.2 ItemPointers: optional fields

Items are used to transfer variables. Each packet can contain a variable number of data fields, called Item-
Pointers, which follow directly after the SPEAD header. Each ItemPointer consists of some bits of ItemIdenti-
fier and some bits of ItemAddress, a pointer to the location of the data in the Heap, in direct address mode, or
the data itself, in immediate address mode.

ItemPointers can have a user-defined length, which defines the flavour of the SPEAD protocol employed. See
above description for more information on sizing these fields.

The number of ItemPointers in a packet is defined by the NumberOfItems field in the SPEAD header, and should
be 3 or more; a minimum of 3 are required by SPEAD.

ItemAddressMode : An ItemPointer’s lower bits, the ItemAddress field, normally store the Heap address
where that Item’s data can be found. This is called absolute addressing mode.

Alternatively, the ItemAddress field can store the Item’s value. This is called immediate addressing mode.

Using immediate addressing allows for data widths of up to HeapAddressWidth bytes to be accommo-
dated without incurring the additional overhead of a pointer. Whereas using a pointer in direct addressing
mode allows for lengths of data longer than HeapAddressWidth bytes.

The addressing mode, and hence the interpretation of the ItemAddress field, is determined by the first bit
in the ItemPointer. If this bit is clear, the ItemAddress field is interpreted as an index into the payload
of the Heap and is a direct address. If this bit is set, the associated address is interpreted to immediately
contain the value of the Item and is an immediate address.

ItemIdentifier : This field (23 bits for SPEAD-64-40) contains a numerical identifier that associates this
ItemPointer with a corresponding Item whose value is being updated.

ItemAddress : The address (40 bits for SPEAD-64-40) can contain either a direct address into the Heap where
the value for this Item is located, or it can contain the Item’s value. The interpretation of this field depends
on how the ItemAddressMode field is set.

Example of an ItemPointer in SPEAD-64-40:

2012/10/16
c©CASPER 2010

Open Source, GPL Page 11 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

MSb LSb
ItemAddressMode (1b) ItemIdentifier (23b) ItemAddress (40b)

If a packet is received that contains an unknown Item, it might be recorded and ignored or otherwise the receiver
might request a metadata reissue to explain the content (see item 0x0005, the ITEM_DESCRIPTOR Item). In
any case, the reception of unknown Items should not be considered illegal and should be handled cleanly by a
receiver.

Generally the Items will be self defining and thus do not need strict identification in this document. However,
it is necessary to define a few Items which will be used for stream configuration and control.

The following table defines these standardised ItemIdentifiers and their meaning. Note that some of these
require certain address modes.

Dec Hex Description Addr mode
0 0x0000 NULL - Ignore Ignored
1 0x0001 Heap counter Immediate
2 0x0002 Heap size Immediate
3 0x0003 Heap offset Immediate
4 0x0004 Packet payload length Immediate
5 0x0005 Item descriptor Absolute
6 0x0006 Stream control Immediate

16 0x0010 Item descriptor: name Not specified
17 0x0011 Item descriptor: description Not specified
18 0x0012 Item descriptor: shape Not specified
19 0x0013 Item descriptor: type Not specified
20 0x0014 Item descriptor: ID Immediate
21 0x0015 Item descriptor: dtype Absolute

The remaining ItemIdentifier address space is available for user specification. It is recommended that users’
applications start at Item #1024.

Herewith follows an explanation for these standard Items:

8.2.1 NULL

This Item is used for optional data padding and can be ignored by the receiver.

8.2.2 Heap counter

Required field.

Normally just a counter that increments with each Heap update. This number does not need to be continuous
or even monotonic, but must be unique. It is used to identify the Heap to which a packet belongs.

Numerical Identifier : 0x0001

Name : heap_counter

Description : Identify to which Heap a packet belongs.

Type : unsigned integer, immediate addressing.

Shape : 1

2012/10/16
c©CASPER 2010

Open Source, GPL Page 12 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

8.2.3 Heap size

Optional Item.

It is highly recommended that this Item be issued for each Heap to allow receivers to detect when a Heap is
complete (as opposed to waiting for a timeout or buffer overflow).

Numerical Identifier : 0x0002

Name : heap_size

Description : Specify the total size of the Heap, up-front, in bytes. Allows processing right after
reception of last packet of the Heap.

Type : unsigned integer, immediate addressing.

Shape : 1

8.2.4 Heap offset

Required field.

The position relative to the start of this Heap, at which the payload of the current packet starts. It is used for
re-assembling a Heap that was split across multiple packets. It is reset back to zero for the following Heap.

For example, in a correlator, this field would typically measure the byte offset from the start of an integration,
as each integration would constitute another Heap.

Numerical Identifier : 0x0003

Name : heap_offset

Description : The position in bytes relative to the start of this Heap at which the payload of the
current packet starts.

Type : unsigned integer, immediate addressing.

Shape : 1

8.2.5 Packet payload length

Required field.

This is the size in bytes of the packet payload length, excluding the header and item fields.

Numerical Identifier : 0x0004

Name : pkt_len

Description : The length in bytes of this packet’s payload.

Type : unsigned integer, immediate addressing.

Shape : 1

2012/10/16
c©CASPER 2010

Open Source, GPL Page 13 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

8.2.6 Stream control

Optional Item.

Numerical Identifier : 0x0006

Name : stream_ctrl

Description : Indicates the status of the SPEAD stream.

Type : unsigned integer, immediate addressing.

Shape : 1

The STREAM_CONTROL Item can indicate the one of the following status for a SPEAD stream:

0 : Stream start

1 : ItemDescriptor reissue (see section below on ItemDescriptors)

2 : Stream stop

3 : ItemDescriptor update (Item has changed dimensions)

>=4 : Reserved for future use. Ignore.

8.3 ItemDescriptors

ItemDescriptors are used to provide receiving clients with the metadata required to decode, interpret and unpack
Heaps to form ItemGroups as part of a particular SPEAD stream. In general, these packets will be sent at the
start of a session before data packet transmissions begin.

ItemDescriptor updates can be issued at any time, including during a data stream. Such re-issuances are encour-
aged, so that if a receiver were to fail or lose state, it can recover and continue processing incoming data. Such
packets may or may not contain a STREAM_CONTROL Item with the value of 1 (ItemDescriptor reissue).

Updates to Items that are captured together with data, i.e. as part of the same Heap, are applied immediately to
that captured Heap prior to unpacking or data interpretation. This allows the user to change object dimensions
on-the-fly. Such data may or may not be accompanied by a STREAM_CONTROL Item with the value of 3
(ItemDescriptor update).

ItemDescriptors are themselves complete SPEAD packets, including the SPEAD header (see Appendix for
example usage). Each ItemDescriptor should contain at least the following Items:

ItemDescriptorID : The numerical code used to identify the Item that we are describing. It has a bitwidth of
ItemPointerWidth−HeapAddressWidth−1.

ItemDescriptorName : A short string identifying the variable contained in this Item.

ItemDescriptorDescription : A human-readable string explaining the variable’s use and packing scheme.

ItemDescriptorType : A binary-packed string representing the data type (signed or unsigned integer, float,
string, boolean etc) and number of bits per value.

ItemDescriptorShape : A binary-packed string representing the size along each dimension.

ItemDescriptorDType : An optional string specifying the shape and type of this item using numpy dtype
string syntax.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 14 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

8.3.1 ItemDescriptorID

The value of this ItemDescriptor Item is the identifier of the Item that we are trying to describe in this ItemDe-
scriptor.

Numerical Identifier : 0x0014

Name : descriptor_id

Description : The numerical code used to identify the Item described by this ItemDescriptor.

Type : unsigned integer, immediate addressing.

Shape : 1

8.3.2 ItemDescriptorName

Payload names are intended to be parsed and presented in the receiver namespace and thus should not include
whitespace (including [LF], [FF] etc).

SPEAD does not mandate a maximum length for this field. It will be unpacked as the variable name by the
receiver, so this should not be a verbose field. Use ItemDescriptorDescription for detailed explanations.

Numerical Identifier : 0x0010

Name : descriptor_name

Description : The variable name used to identify the Item described by this ItemDescriptor.

Type : string

Shape : variable length, single dimension

8.3.3 ItemDescriptorDescription

Numerical Identifier : 0x0011

Name : descriptor_description

Description : The human-readable description of the Item described by this ItemDescriptor.

Type : string

Shape : variable length, single dimension

8.3.4 ItemDescriptorType

Numerical Identifier : 0x0013

Name : descriptor_type

Description : Machine-parsable string detailing this Item’s binary packing.

Type : string

Shape : variable length, single dimension

2012/10/16
c©CASPER 2010

Open Source, GPL Page 15 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

This Item contains an unpack string telling the parser how to unpack the payload, and follows a C style printf
convention, with the addition of referenced data types. The ItemType’s string payload can contain one or more
unpack directives, with each directive referring to a consecutive data type in the payload. Each directive has
the following form: unpack_type[bit_length | ItemIdentifier].

ASCII Hex Representation
0 0x0030 interpret remaining XX bits as an ItemIdentifier
i 0x0069 signed integer
u 0x0075 unsigned integer
f 0x0066 IEEE float
c 0x0063 ASCII character
b 0x0062 boolean

The unpack character ‘0’ allows the unpack string to reference another Item, thus allowing hierarchical con-
structs. Where the bit_length (or ItemIdentifier) field has the same size as your SPEAD flavour’s ItemIdenti-
fierWidth.

8.3.5 ItemDescriptorShape

Numerical Identifier : 0x0012

Name : descriptor_shape

Description : Binary packed vector explaining the shape of this Item, in terms of the number of
ItemTypeItems per dimension.

Type : binary packed vector

Shape : variable length binary field with one dimension

The ItemShape string allows multiple data constructs of the type specified in the ItemType unpack string to be
placed contiguously in the data stream. These values are binary packed integer values. It has the following
form:

count_axis1[,count_axis2[,count_axis3 [...]]]

where each count_axis field is HeapAddrWidth+1 bytes long. The LSb of the first byte of this field indicates if
the value is given immediately or otherwise references another item, i.e. it is possible to have variable-length
arrays. This size allows indexing of a 1 bit vector along the entire heap.

8.3.6 ItemDescriptorDType

Numerical Identifier : 0x0015

Name : descriptor_dtype

Description : String representation of numpy dtype.

Type : string

Shape : variable length, single dimension

The optional descriptor dtype allows specification of the type and shape of an Item using a numpy style dtype
string. If this string is present the specified shape and type fields, if any, are ignored and populated from the
decoded numpy dtype.

The current reference implementation makes use of this dtype specifier to unpack items directly to numpy
arrays, realising a significant speedup. Thus, the advantage of this parameter may depend on the specific
receiver implementation in use.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 16 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

8.3.7 Example ItemDescriptor

For example, if the user wished to pack a 100x100 pixel RGB-24 image consisting of 8 bit numbers, you might
use the following ItemDescriptor (as illustrated in Figure 4).

descriptor_identifier : 0x5555
Assign numerical identification code as an unsigned integer with immediate addressing.

descriptor_name : "my_picture"
Short string of length 10 characters interpreted as variable name.

descriptor_description : "A 100x100 pixel RGB-24 image consisting of structs of unsigned 8b red,
8b green and 8b blue data. Data is packed in rows (i.e. you get 100 pixels from row-1, followed by 100
pixels from row-2 etc)."
A verbose, human readable string of length 195 characters.

descriptor_type : u8u8u8
ItemDescriptorType represents the data type (1 byte) and number of bits per component (with bitwidth
defined by the ItemIdentifierWidth of 24 bits). Thus, the number of bytes required to represent the type
description: 3(1+24/8) = 12 bytes.

descriptor_shape : 100,100
ItemDescriptorShape is read as a sequence of unsigned integers representing the variable size along
each dimension. The number of bytes required to represent the shape description is defined by the
HeapAddressWidth (40 bits) + 1 byte: 2(1+40/8) = 12 bytes. For this example the LSb of the first byte
of each component is zero (0), indicating that dimensions value follows immediately. (If the LSb of the
first byte is one (1), it indicates that a pointer to another Item follows).

The type and shape fields shown above could be replaced by a numpy dtype string:

descriptor_dtype: "‘descr’:‘u1’, ‘fortran_order’:False, ‘shape’:(100,100,.3),"

Figure 4: Example ItemDescriptor constructed from metadata provided above.

9 Extra features

9.1 HEAP processing

Normally, the system waits for the first packet from the next Heap to arrive before beginning processing of the
currently received Heap. This feature is useful when heap sizes need to be flexible. This is typical when the
receiver does not know when it has received all the data for a Heap.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 17 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

However, if the receiver knows the size of the heap beforehand, it can start unpacking as soon as all data has
arrived. This allows the protocol to deal with systems which needs to transmit a response to an incoming data
stream before receiving the next piece of data (see Item ID 0x0002).

It is also possible to have multiple Heaps open at the same time. This is due to network reordering of UDP
packets, the system can have packets from multiple Heaps being received at the same time. In this case you do
not want to start processing the previous Heap until you are satisfied that all packets have arrived.

Buffer "windows" allow temporary storage of incoming packets associated with up to (N-1) Heaps. The system
will wait for the first packet of the Nth Heap to begin processing of the the Heap with the lowest heap counter
(see Item ID 0x0001).

In general, it is highly recommended that the user transmits the heap size (Item ID 0x0002) wherever possible.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 18 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

A Example Packet Exchange

To illustrate the process of encoding and assigning new Items we consider an example where we want to
transmit the 3 variables described in Figure 1 found in the Data Overview Section. These variables are a string,
MyString, an integer counter, MyCntr, and an array of 32-bit unsigned integers, MyArray.

1. For each new variable an ItemDescriptor is generated. This is necessary for the receiving system to know
how to interpret and unpack the data. These packets must be sent before data transmission begins.

2. ItemDescriptors are issued once, at the start of the stream and then only need to be re-sent if parameter
shapes change. Full ItemDescriptor packets can also be regenerated upon request through out-of-band
signalling, allowing a receiver to process a stream which had been started earlier.

When a data stream terminates, a further packet may be sent. This may contain a stream control Item to
indicate that the transmission has completed.

3. During transmission of the data stream, packets should contain only the changed Item fields, in order to
maximise the utilisation of the link. The receiver keeps previous state of Items. Thus, it is only when the
value of an Item changes that it need to be retransmitted.

4. Received ItemPointers are added to the associated Heap. The immediate-addressed Item with identifier
0x167’s (MyCntr) value is available immediately. Item 0x168 (MyArray) must wait for the Heap unpack
before processing. Packet 1’s payload is inserted into Heap 1 at offset 0x0. Packet 2 is still pending and
the data from Item 0x168 is only partially available.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 19 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

Figure 5: Creating ItemDescriptors to define 3 variables for transmission using SPEAD-64-40.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 20 of 21

Open Source, GPL
SSA4700-0000-001

Revision: 1

Figure 6: Once an Item has been described, data packet transmission can begin. In Step 3 of this example we use
ridiculously small packets to demonstrate fragmentation.

2012/10/16
c©CASPER 2010

Open Source, GPL Page 21 of 21

